NRC·CNRC

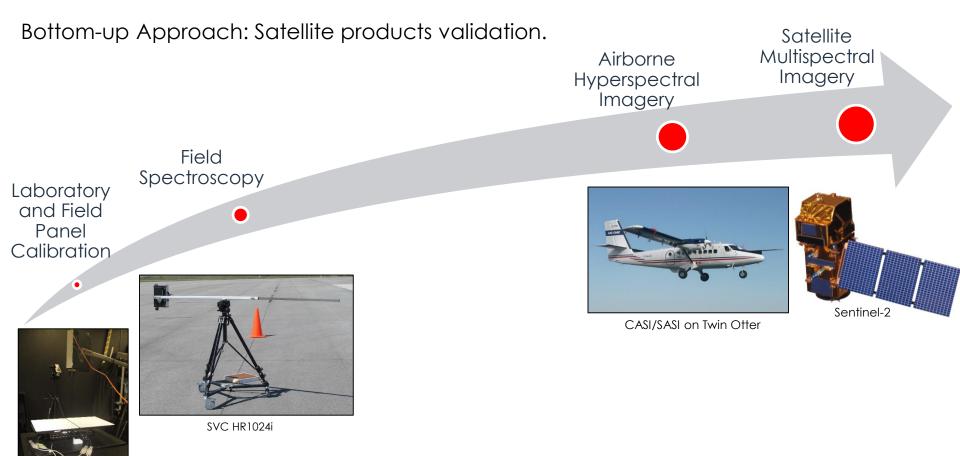
Land Cal/Val Activities at the Mer Bleue Arctic Surrogate Simulation Site (MBASSS):

Introduction of UAV Hyperspectral to Upscale validation process

Raymond Soffer <u>Flight Research</u> Laboratory, National Research Council Canada

Quality Assurance for Earth Observation, Workshop #2 - Dec 2, 2020

NRC.CANADA.CA


Research Conseil national de Canada recherches Canada

2nd December 2020

NRC QA4EO-IDEAS Objective

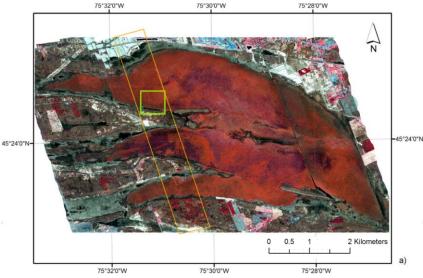
Integration and validation of UAV hyperspectral imagery into the Bottom–Up Satellite (S2) Multispectral image data product validation approach previously developed under the IDEAS+ MBASSS project

This will fill in the spatial resolution/sampling mismatch between the field spectroscopy measurements and the airborne hyperspectral imagery.

Cross-calibration setup

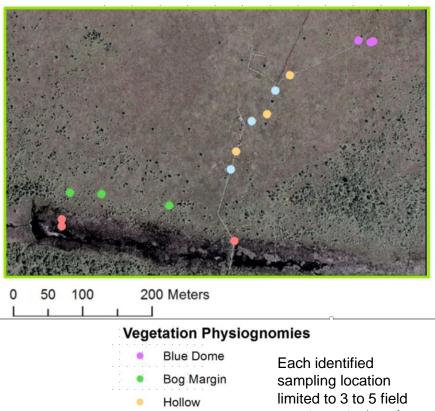
Methodology developed and validated in IDEAS+

NRC·CNRC


Cross-calibration setup

Methodology to be developed and validated in QA4EO

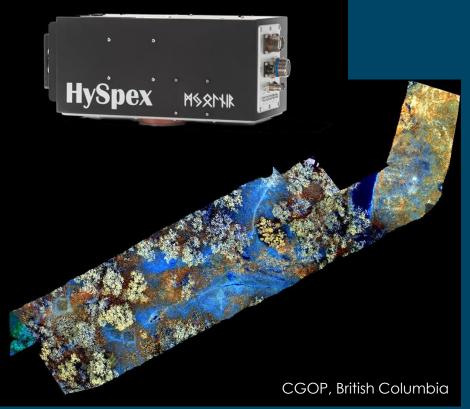
NRC CNRC


Study Site – Mer Bleue Peatland

- 12 flight lines / Mer Blue Mosaic
- 14 sampling sites 6 Physiognomies

Upscaling (field to airborne) limitations

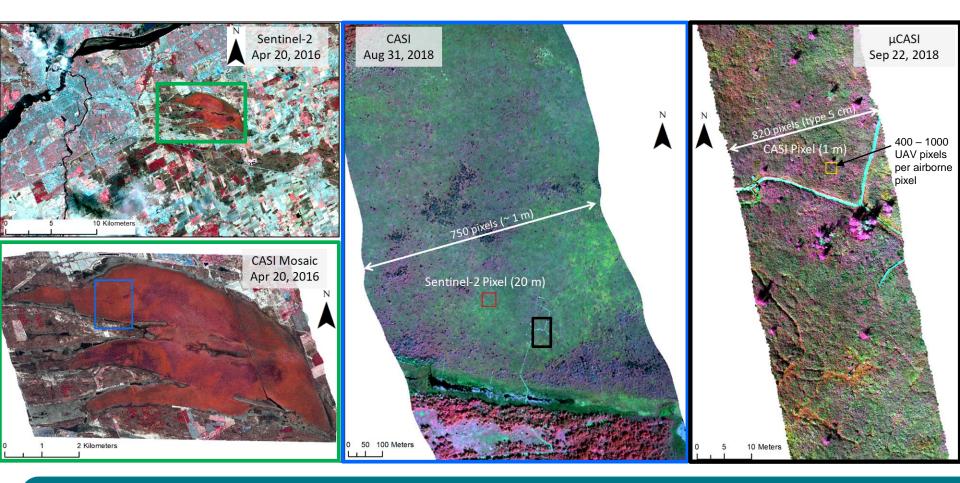
- Limited # of sample sites
- Restricted sampling site location (adjacent to boardwalk)
- Limited samples / site despite heterogeneity site (time constraints)
- Limited coverage FOV per sample ~5 cm
- Time to access all sampling sites (temporal proximity to aircraft overpass)



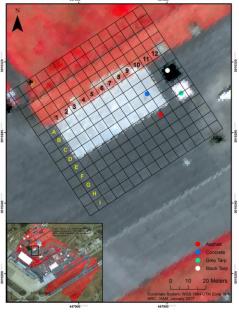
spectrometry 'spot' measurements.

NRC CNRC

HySpex System Mjolnir VS-620

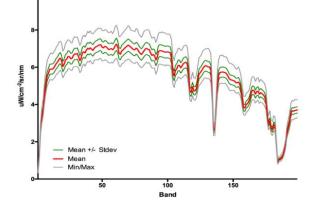


UAV-HSI: Hyspex Mjolnir VS620


	V-1240	S-620
Spectral range	400 – 1000 nm	970 – 2500 nm
Combined spectral range	400 – 2500 nm	
Spatial pixels	1240	620
Combined spatial pixels	620	
Spectral channels and sampling interval	200 bands @ 3.0 nm	300 bands @ 5.1 nm
Combined spectral channels	490	
F-number	f1.8	f1.9
FOV	20°	20°
Combined FOV	20°	
IFOV across/along track	0.27 /0.54 mrad	0.54 /0.54 mrad
Bit resolution	12 bits	16 bits
Noise floor	2.37 e-	80 e-
Dynamic range	4400	10000
Peak SNR (at full resolution)	> 180:1	> 900:1
Max speed (a full resolution)	285 fps	100 fps
Detector type	Silicone CCD	Mercury Cadmium Telluride (MCT) FPA
Smile and keystone	< 10% per pixel per band	
Radiometric calibration traceability	To a Physikalisch-Technische Bundesanstalt (PTB) standard	
Power consumption*	50 W	
Dimensions (I-w-h)	374 – 202 – 178 mm	
Weight*	< 6.5 kg including standard battery	

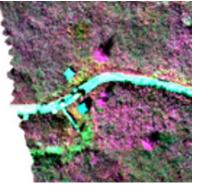
NRC·CNRC

U61 Cal/Val Site



Cal/Val Support – Airborne Hyperspectral

Issues of Concern

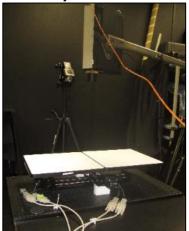

- Spatially remote from primary target
- Separate flight Line
- Large, difficult to deploy targets
 - Wind
 - Flat backing required
 - Folds in material due to stretching
 - Debris on surface
- Difficult to characterize
 - Uniformity issues require multiple field spectrometry measurements
- Manpower split between 2 sites

In-Scene Cal/Val Site

Cal/Val Support – UAV Hyperspectral

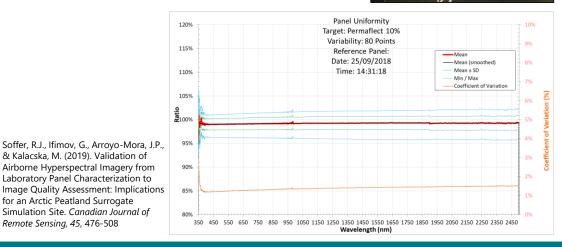
Pros

• On Site (within flight line or adjacent to)

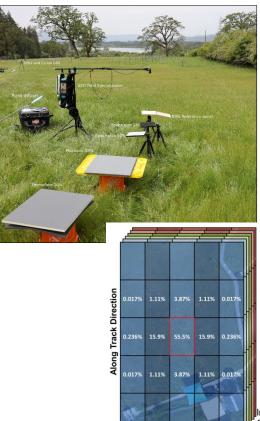

for an Arctic Peatland Surrogate

Remote Sensing, 45, 476-508

- Single field deployment
- Small targets •
- Laboratory characterization •
 - Single measurement with known uniformity
- Field spectrometry

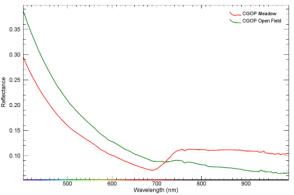

Focus on cal/val targets, not field spectra

Laboratory Characterization



NRC·CNRC

Cal/Val Support – UAV Hyperspectral



Issues of Concern

- Despite availability of lab characterization, measurements under field conditions still required
 - nBCRF only known for 99%
 Spectralon
- Target Location
 - Impact of in-scattering objects
- Cal/Val Target Selection
- Material (Spectralon?, Permaflect?)
- Reflectance levels
 - Maximum radiometric separation
 - Will 50% saturate?
- Panel Size
 - # of pixels in UAV imagery
 - Energy distribution
- Number of targets
- Calibration targets 2
 (brightest (50%) and darkest (50%)
- Validation targets ≥ 2 (10%, 18%, 30%)

Inamdar, D., Kalacska, M., Leblanc, G., & Arroyo-Mora, J.P. (2020). Characterizing and Mitigating Sensor Generated Spatial Correlations in Airborne Hyperspectral Imaging Data. *Remote Sensing*, 12, 641

NRC·CNRC

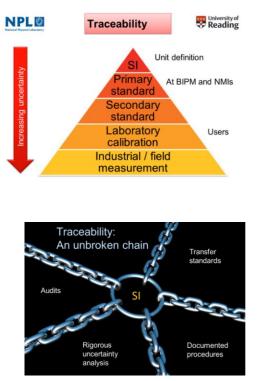
QA4EO-IDEAS WS#2 - December 2, 2020

Across Track Direction

Project Timeline

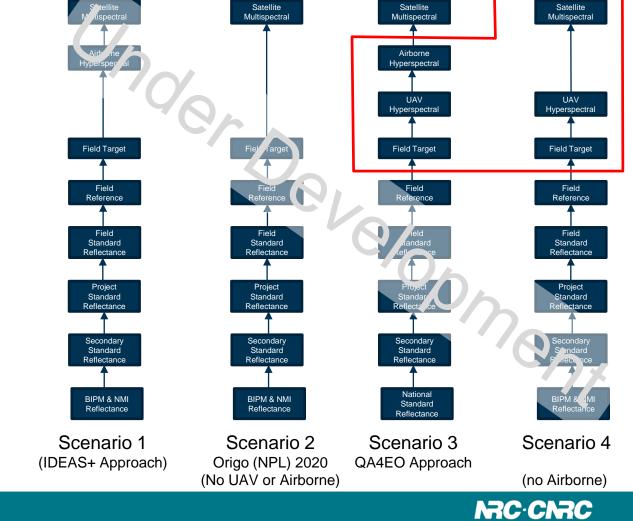
- Covid19 lock down
 - Delay of 1 year for primary data acquisition activity.
 - NRC Airborne activities shut down for 6 months
 - Primary impact
 - reduced period available to perform the data analysis
 - increased preparation time

	Original	Delayed (Covid19)
Field work planning and preparations	April – June '20	Nov. – June '21
Shake down flights	June '20	June '21
Data acquisition activities (S2 coordination)	June (late) - July (early), '20	June (late) - July (early) '21
Data Preprocessing	Sept. – Oct. '20	Aug. – Sept. '21
Data Analysis	Oct. '20 – Feb. '22	Sept. '21 – Feb. '22
Preliminary Report	March '22	March '22
Final Report	April '22	April '22



Proposed scope expansion through CCN proposal under consideration:

Collaboration with NPL (Niall Origo) and WUR (Benjamin Brede -TBC)


- 1) Development of an uncertainty budgets which accounts for the full procedure chain in the upscaling validation process of multispectral satellite reflectance data product traceable to a national standard.
- 2) Development of a Best Practices protocols for consideration in the application of UAV-hyperspectral for surface reflectance validation and assessment of traceability.

Courtesy Nigel Fox (NPL)

Origo, N., Gorroño, J., Ryder, J., Nightingale, J., & Bialek, A. (2020). Fiducial Reference Measurements for validation of Sentinel-2 and Proba-V surface reflectance products. *Remote Sensing of Environment, 241*, 111690

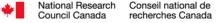
MBPO LPV Super-Site Development

- Mer Bleue Identified 2 years ago as LPV Super Site
- To be managed by the MBPO (McGill University)
- Funding sources to cover additional instrumentation and maintenance being developed (beyond the scope of this project)
- <u>Current capabilities:</u>
 - Airborne/UAV hyperspectral imagery
 - Sentinel-2, Landsat 8/9, MODIS imagery
 - Flux tower (CO₂ and Meteorological measurements FLUXNET)
 - Methane flux chambers
 - Water Table Depths
 - Ground Temperature
 - Albedo Tower measurements validated Landsat 8 Albedo available

QA4EO-IDEAS WS#2 - December 2, 2020

<u>Capabilities under development:</u>

- Cimel Sun photometer (Aeronet)
- Land surface temperature
- Albedo Tower measurements in support of MODIS, and VIIRS Albedo product (TBD) – Crystal Schaaf



THANK YOU!

Raymond Soffer (ray.soffer@nrc-cnrc.gc.ca) Research Council Officer Aerospace Research Centre Flight Research Laboratory 1920 Research Rd Ottawa ON K1A 0R7

