

B. Torres, O. Dubovik and D. Fuertes

Introduction

Scope of ISTINA-WP3380-2

- To establish <u>fundamental limits</u> for the different types of aerosol remote sensing approaches:
 - Up and down looking.
 - Active and passive.
- Variability of <u>retrieval accuracy</u> limits for observations with <u>different set ups</u>:
 - Spectral coverage.
 - Multi-Angularity.
 - Polarimetric capabilities.
- Potential of synergy.

Introduction

Key questions:

- What is the best approximation for modelling size distribution?
 - Bi-modal log-normal.
 - Binned distributions size.
- Can the composition (or refractive index) of fine and coarse modes be distinguished and using which observations?
- How some inevitable assumptions may limit retrieval accuracy even from highly accurate observations?
- What are the limitations of surface reflectance parametric
 models of land and water surfaces?

ISTINA - WP3380-2:

Assessments of Sensitivity Tendencies in Aerosol Remote Sensing Experimental data. <u>("Single Scattering")</u>

ISTINA – WP3380-4 (Ext):

Practical recommendations for aerosol retrieval of real

remote sensing observations ("Multiple Scattering")

WP3380-2: Focus on "Single scattering"

Why?

- Aerosol remote sensing algorithms rely on the manifestation of angular and spectral features in aerosol scattering <u>which are mostly determined by</u> <u>aerosol single scattering properties</u> such as phase matrix, extinction and absorption.
- We expect to clarify some fundamental tendencies and limitations in information content, and benefit from them in the follow-on more complex studies (WP3380-4) for outlining and establishing clear limits in the retrieval capacities.

ground-based and satellites observations.

Type of tests

1.- Only extinction values

- Objective: Information of SD and fine/coarse mode separation.
- Main interest: moon nhotometers_cloudy sites_etc
- 2.- Scattering measurements
- a.- Extinction is not part of the measurements.
- > Objective: Retrieval of extinction values and SSA.
 - Only $P_{11}(\Theta)$ measurements.
 - Adding polarization: $-P_{12}(\Theta)/P_{11}(\Theta)$.
- ♦ Main interest: Relevant to AOD-SSA satellite retrieval.
- b.- Extinction is part of the measurements.
- > Objective: Detailed aerosol properties characterization.
- > Main interest: Sun photometer retrieval.

Test 1: Only extinction values

"Advanced characterization of aerosol properties from measurements of spectral optical thickness of the atmosphere " (Torres et al. 2016)

Operational inversion code!

<u>INPUT</u>

- 8 AOD measurements between 340-1640 nm
- We assume optical properties (refr. ind. <u>16 parameters</u>) & <u>1</u>

<u>OUTPUT</u>

 C_{Vc}

- Size distribution:
- ♦ We started with 22-bins approximation
 - ♦ Extremely sensitive to errors
 - Stability problems (only solved with string smoothness constraints)

♦ Bi-lognormal approximation (6 parameters): R_{Vf} , σ_{Vf} , C_{Vf} + R_{Vc} , σ_{Vc} ,

Test 1: Only extinction values

b) Validations with AERONET

- 650 AOD inversions vs 150 almucantar inversions (daily averages).

Test 1: Only extinction values

Conclusions

- Spectral AOD measurements are sufficient for a <u>reliable</u>
 <u>characterization of aerosol fine mode</u> optical properties;
- The discrimination between the extinction of fine and coarse modes of aerosol is not dependent on any assumption, while the retrieval of parameters such as (R_{Vf}, σ_{Vf} and C_{Vf}) depends on available information about the real part of refractive index and the quality of the measurements.
- The characterization of the <u>coarse mode</u> using only AOD measurements <u>is less accurate</u>, but can be significantly improved using moderate a priori assumptions.

Test 2a: Scattering measurements

Observation Conditions

Scattering angular range

[340, 380, 440, 500, 670, 870, 1020, 1640] – AERONET extended, 3MI.
[440, 670, 870, 1020] – AERONET standard, Parasol, MODIS.
[440, 670, 870] – Meris.

Retrieval Assumptions

- •Síde dístríbutíon Bínned
 - –<u>22 bíns</u> (líke ín AERONET retrieval).
 - -Refractive index spectrally dependent (<u>1-2 aerosol)</u>.
- •Síde dístribution Bí-lognormal
 - -<u>6 parameters</u>: \mathcal{R}_{Vf} , σ_{Vf} , \mathcal{C}_{Vf} \mathcal{R}_{Vc} , σ_{Vc} , \mathcal{C}_{Vc}
 - -Refractive index spectrally dependent (<u>1-2 aerosol)</u>.
- Standard aerosol models for regular tests.
 Volcanic: <u>Three modes</u> for size distribution.
 Effect of considering bi-lognormal?
 Mixed: <u>Two refractive index</u>: fine/coarse.
 Effect of considering only one in the retrieval.
 Can they be <u>distinguished</u>? In which conditions?

Aerosol models

IASH

- <u>GSFC</u> Urban (Fine mode non absorbing
- <u>ZAMB</u> Biomass burning the mole is sorbing
- <u>SOLV</u> Desert dust (Coarse mon On absorbing)
- <u>LANA</u> Marine (Conte mode non absorbing
- Mixed: Bio 2115 burning + Desert dust

Three modes: Volcanic + Urban

- Regular tests:

\rightarrow AOD retrieval from P₁₁ (and -P₁₂/P₁₁)

Regular tests: 22 bins – 4 wv

22 Bins: 4 wv - P₁₁

GSFC ZAMB

SOLV

LANA

MIXT

3°-180°

MASH

N.R.

0.1

0.08

0.06

0.04

0.02

0

 $|\Delta_{7}(440)|$

3°-90°

Cases

3°-45°

3°-10°

3°-120°

Regular tests: <u>22 bins – 4 wv</u>

- Differences under 5% for most of the cases.
- Largest differences for:
 - [3º-10º]
 - [100°-180°]
 - [140°-180°]
 - $[120^{\circ}] \rightarrow \text{No retrieval}.$
- Improvement for 8wv (not shown).
- Improvement with polarization (not shown).
- <u>Uncertainties related to retrieval of</u> optical properties.
- Improvement with bimodal lognormal approach.

Regular tests: 22 bins – 4 wv

22 Bins: 4 wv - P₁₁

Refractive index - known -

Regular tests: <u>22 bins – 4 wv</u>

- Differences under 5% for most of the cases.
- Largest differences for:
 - [3º-10º]
 - [100°-180°]
 - [140°-180°]
 - $[120^{\circ}] \rightarrow \text{No retrieval}.$
- Improvement for 8wv (not shown).
- Improvement with polarization (not shown).
- Uncertainties related to retrieval of optical properties.

• Improvement with bimodal lognormal approach.

Regular tests: bimodal log-normal.

Regular tests: bimodal log-normal.

Regular tests: bimodal log-normal.

- General improvement. Specially for the ranges:
 - [3^o-10^o]
 - [100°-180°]
 - [140°-180°]
 - [120^o] → Now retrieval!
- Worse retrieval for 3-mode case (specially, when we have information).

What happens with 3-mode case with

the appox. of bimodal log-normal?

Can we distinguish two Ref. Ind.?

Three modes: 22 bins vs bi-lognormal

Can we separate the modes? - Mash-

<u>Step 1:</u> "Advanced characterization of aerosol properties from measurements of spectral optical thickness of the atm+100000." (Torres et al. 2016)

Step 2: Retrievals from single scattering measurements.

- Retrieval of extinction values from P11 measurements 1680 retrievals
- Addition of polarimetric information -P12/P11.
- Full retrieval with extinction as input.

"..." (Torres et al. 2016)

<u>Step 3:</u> Up looking (sun-photometry)

Step 4: Down looking (satellite retrievals)

Adding wavelength (not shown)

Adding polarization (not shown)

Bi-lognormal with <u>2 refractive index.</u>

Bi-lognormal with <u>2 refractive index.</u>

