

ASSESSMENT OF NORTHERN HEMISPHERE SWE DATASETS IN THE ESA SNOWPEX INITIATIVE

<u>Kari Luojus</u>¹⁾, Jouni Pulliainen¹⁾, Matias Takala¹⁾, Juha Lemmetyinen¹⁾, Chris Derksen²⁾, Lawrence Mudryk²⁾, Michael Kern³⁾, Bojan Bojkov⁴⁾ and Thomas Nagler⁵⁾

Finnish Meteorological Institute⁽¹⁾, Environment and Climate Change Canada, Canada⁽²⁾ ESA/ESTEC⁽³⁾, EUMETSAT⁽⁴⁾, ENVEO IT GmbH⁽⁵⁾

Environment En Canada Ca

"SnowPEx SWE, Assessment of seasonal snow cover mass for Northern Hemisphere, using satellite data"

- 1) Uncertainties in observed and modelled NH SWE conditions
- 2) Comparison of SWE datasets in ESA SnowPEx -project
- 3) Constraining SWE products using optical SE data
- 4) Changes in seasonal snow cover mass for NH 1982 2016

Uncertainty in NH Seasonal Snow mass

Spread in NH snow mass between model-based and Satellite-based estimates!

"Satellite-based" GlobSnow SWE estimate

Models vs. "Satellite-based" data

GlobSnow ensemble vs. ensemble historical & RCP8.5 "forecast" March & April: 16 CMIP5 models

Significant over-estimation of spring-time snow mass in CMIP5 model simulations
CMIP5: Historical + RCP8.5 forecasts

GlobSnow mean: 2900 Gt CMIP5 mean: 3600 Gt (~25% over-estimation)

March spread in CMIP5: 2600 - 4300 Gt

SnowPEx SWE Datasets (Oper., NH-domain)

Dataset	Method	Ancillary/ Forcing Data	Resolution	Time Series	Reference
GlobSnow	Passive microwave + in situ	Weather station snow depth measurements	25 km	1979-2015	Takala et al (2011)
NASA AMSR-E standard	Standalone passive microwave		25 km	2002-2011	Kelly (2009)
NASA AMSR-E prototype	Microwave + ground station climatology	Weather station snow depth climatology	25 km	2002-2011	TBD
ERAint-Land	HTESSEL land surface model	ERA-interim	0.75° x 0.75°	1981-2010	Balsamo et al (2013)
MERRA	Catchment land surface model	MERRA	0.5° x 0.67°	1981-2010	Rienecker et al (2011)
Crocus	ISBA land surface + Crocus snow model	ERA-interim	1° x 1°	1981-2010	Brun et al (2013)
GLDAS-2	Noah 3.3 land surface model	Princeton Met.	1° x 1°	1981-2010	Rodell et al (2004)

GlobSnow-2, NASA Standard, AMSR-e Prototype SWE "Quicklooks"

Reference data – snow courses & transects

- Russia, a total of 1346 snow transects
- Vast geographical domain with diverse conditions

Finland, 100+ national snow courses

- Russia: years 1966-2016, 1-2km snow transects, Northern Eurasia
- Finland: years 1979-2017, 4km snow courses, Northern boreal forest

GlobSnow-2 SWE vs. RIHMI WDC (2002-2011)

38197 Coinciding samples of GlobSnow, NASA Standard and NASA prototype SWE

Evaluations for the samples available in all 3 products!

"Blended product" = combines satellite and ground-based WS-data

esa

SWE analysis on a monthly basis, RMSE

• Differences increase towards the end of the snow accumulation season

Monthly SWE Analysis: relative RMSE & bias

Oct/May only ~3k samples, compared to 20k-40k for other months (1981-2010)

Overview: Satellite-based SWE datasets

Observed under-estimation of NASA SWE products due to high negative bias with deep snow. Total snow estimates of GlobSnow for NH are more accurate.

Overview – SWE products (satellite & model-based)

- Assessed for an uniform time period, ranked by retrieval performance (RMSE)
- Time period 2002-2010 & 1981-2010, Russian snow course data as reference

Datasets	Dataset availability	Retrieval performance (RMSE) 2002-2010	Bias 2002-2010	Retrieval performance (RMSE) 1981-2010	Bias 1981-2010
GlobSnow v2.0	1979-2015	42.6 mm	-3.8 mm	44.9 mm	-4.3 mm
CROCUS-Era-Interim	1981-2010	45.8 mm	+1.1 mm	48.0 mm	+4.7 mm
GLDAS2.0-Noah	1981-2010	48.0 mm	-8.4 mm	49.5 mm	-10.8 mm
MERRA (Standard)	1981-2010	54.9 mm	+12.9 mm	57.9 mm	+15.2 mm
ERA-Interim (ERA-Land)	1981-2010	67.3 mm	+35.4 mm	74.7 mm	+42.4 mm
NASA Standard	2002-2011	67.4 mm	-24.3 mm	-	-
NASA Prototype	2002-2011	72.4 mm	-19.9 mm	-	-

Anomaly Correlation

Comparison of Anomalies

Dataset Correlation

Trends

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

Constraining SWE products using optical SE data

Fusion of GlobSnow SE and SWE

GlobSnow SWE NRT-product has difficulties in detecting snow line during spring melt season -> snow line identification from SE-product

Fusion with optical data (*GlobSnow SCAmod VIIRS*) -> more realistic snow line during the melt season

JXAM5 daily (5km) FSC -> cumulative daily (25km) SE

- SE data from 1978-2016 acquired from JAXA and converted to 25km EASE-grid
 - 1978-2000 from AVHRR; 2001-2016 from MODIS
 - 2001-2008 (AVHRR & MODIS overlap) checked for consistency → OK
- Daily FSC data were combined into a cumulative daily SE mask, using 25% cutoff value
- GlobSnow FPS SWE masked (corrected) using daily composite SE-data

JXAM5 SE-masked GlobSnow SWE - Spring

 IMS+VIIRS-masked NRT SWE product shows significantly higher decrease in HN snow mass, than JXAM5 masked, long term FPS SWE data

IMS+VIIRS masking -> 8,0% decrease in mass

JXAM5 -> 2,5% decrease in mass (at most)

Original assessment was carried out for NRT SWE product with tendency to overestimate springtime SWE! Long-term SWE FPS has an improved snow line, as can be seen!

Average changes in snow mass (constaining SWE with SE data)

JXAM5 SE–masked GS SWE trends (1982 – 2016) January -> trends are practically the same

Trends are practically the same

JXAM5 SE–masked GS SWE trends (1982 – 2016) February -> trends are practically the same

Trends are practically the same

JXAM5 SE–masked GS SWE trends (1982 – 2016) March -> trends are practically the same

Trends are practically the same

JXAM5 SE–masked GS SWE trends (1982 – 2016) April -> trends are slightly increased in the SE-masked product

-2.5%

JXAM5-masked GlobSnow SWE Shows an increased trend

-1.5%

JXAM5 SE–masked GS SWE trends (1982 – 2016) May -> trends are slightly increased in the SE-masked product

JXAM5-masked GlobSnow SWE Shows an increased trend

Assessment of SE trends using SWE data

• Trend analysis:

-Integration of SCE and SWE products: SE used to limit SWE (GlobSnow & JXAM5) -SWE products converted to SCE, 1981-2010; monthly spatial trend maps at 1x1 deg; temporal trend statistics.

-Snow Extent trends from various SWE datasets vs. NOAA_CDR long term trend!

Conclusions on NH SE constrained SWE

- Constraining SWE using optical SCE data results in a new more detailed assessment of volume changes for the NH over the satellite-era (1982-2016)
- The results show a significant decrease in hemispherical snow mass in the past 35 years (1982-2016), May showing a -9.8% decrease per decade
- Looking at the timeframe 1982-1999 and 2000-2016, there's an average decrease of -8.7% in the NH snow mass (individual months in the table – snow masses in gigatons)

Total amount of seasonal snow on Northern Hemisphere is clearly decreasing

Dex

	1980-1999	2000-2016	Decrease
January	2531	2281	-9,9%
February	2969	2742	-7,7%
March	2900	2717	-6,3%
April	1828	1736	-5,0%
May	721	615	-14,7%

SnowPEx SWE Conclusions

enveo

- There is considerable inter-dataset spread in Northern Hemisphere snow mass and snow cover extent derived from available terrestrial snow products.
- Skillful satellite retrievals require assimilation of weather station snow depth observations; land surface models are limited by cold season processes, precipitation forcing etc. In both cases, spatial resolution is a limitation.
- NH snow water trends are generally decreasing in magnitude.
- Snow water trends over Eurasia are generally more uncertain, especially in eastern Siberia.
- Analysis of multiple snow products has a major benefit for climate applications – model spread can be compared to observational spread.

Thackeray et al., in review

