

URBAN ANTHRPOGENIC HEAT FLUX FROM EARTH OBSERVATION SATELLITES

Heat Flux Estimations from Space: the URBANFLUXES Products

Zina Mitraka **FORTH, Greece** ESA LPVE 2018 Frascati, February 28, 2018

The URBANFLUXES Team

Nektarios Chrysoulakis, Zina Mitraka, Stavros Stagakis, Ioannis Lantzanakis SFORT

Mattia Marconcini, Thomas Esch, Wieke Heldens

Jean-Philippe Gastellu-Echegorry, Lucas Landier, Ahmad Al Bitar 💒

Sue Grimmond, Andy Gabey, Will Morrison, I Capel-Timms, Ting Sun, Simone Kotthaus, Helen Ward Reading

Eberhard Parlow, Christian Feigenwinter, Roland Vogt, Andreas Wicki 🗱 🔤 🕬

Fredrik Lindberg, Frans Olofson

Fabio Del Frate, Daniele Latini, Giuseppe Iannitto 💷

Judith Klostermann, Ottelien van Steenis 🚚

URBANFLUXES is co-financed by "HORIZON 2020" EU Framework Programme

News

Hampton

14:00

Sunday

The Telegraph

UK | World | Politics | General Election 2017 | Science | Education | Health | Brexit | Royals | Investigations

A > News

UK weather: Health warning issued as rising temperatures

Ad closed by Google

could see Britain bask in hottest June day since 1976

f share

who have urged families to keep an eye

sweltering conditions.

Why URBANFLUXES?

- Urban planners and Earth System scientists need spatially disaggregated information on urban heat.
- > Not possible to derive it by *in-situ* flux measurements.
- Major challenge: innovative exploitation of Copernicus Sentinels synergistic observations to estimate Urban Energy Budget (UEB) spatiotemporal patterns.

Urban Energy Budget (UEB) $Q^* + Q_F = Q_H + Q_E + \Delta Q_S + \Delta Q_A + S$

*Q**: Net all-wave radiation balance

 Q_F : Anthropogenic heat flux

- Q_{H} : Turbulent sensible heat flux
- Q_E : Turbulent latent heat flux
- ΔQ_{s} : Net change in heat storage
- $\Delta Q_A = Q_{in} Q_{out}$: Advective heat flux
- S: All other sources and sinks

In-situ

Flux towers, Meteorological Sensors Networks

In-situ Observations

- > Flux measurements
- Eddy Covariance flux towers
- Large-aperture scintillometers

In-situ Observations

Sonic Anemometer

- Wind speed 3D
- Temperature

Gas Analyzer

- CO₂ density
- H₂O density

External sensors

- Ambient air temperature
- Ambient air pressure

Maximum frequency: 60 Hz

In-situ Observations

Air temperature, humidity and wind speed

- 1735 - Temperature - 1735 - Surface Temperature

Dec 14 20:0

Dec 14 04:00

Satellite data products

Surface Morphology and Cover

Surface Morphology

Detailed 3D city representation

Urban objects (buildings and trees) and their height

Plan area index

Wall area index

Paved surface fraction

Surface Cover Maps (VHR)

Heraklion

Spatial resolution: 2.5 m

Surface Cover Fractions

Low Vegetation

Evergreen

Deciduous

Spatial resolution: 100 m

Material Endmembers

Material Endmembers

Bright Roof
Dark Roof
Red Tiles
Grey Tiles

Boardleave
Conifers
Low Vegetation
Grass

Bare Soil
Sand
Asphalt
Artificial
Sport Area Tartan

Surface Cover Materials

Spectral Library of Urban Materials (London)

74 samples, 10 categories,

New and weathered materials

210

S. Kotthaus et al. / ISPRS Journal of Photogrammetry and Remote Sensing 94 (2014) 194-212

Table C.1

Meta data for the London impervious urban materials samples, with their measured broadband albedo (300-2500 nm) and emissivity (8-14 µm)

ID	Class/Sub-class	Material	Colour	Status	Dimensions [mm]	Albedo	Em
X001	Quartzite conglomerate	Quartzite	Beige/brown/black/red	New	$360 \times 4 \times 220$	0.26	0.9
X002	Quartzite conglomerate	Quartzite	Beige/brown/black/red	New	$360 \times 4 \times 220$	0.32	0.9
X003	Quartzite conglomerate	Quartzite	Brown	New	$148 \times 27 \times 97$	0.25	0.9
S001	Stone	Sandstone	Beige	Used	$215 \times 35 \times 105$	0.40	0.9
S002	Stone	Carboniferous coral limestone	Grey	Used	120		
S003	Stone	Sandstone	Yellow	Used	120 Sand	ston	08
S004	Stone	Limestone	Beige	Used	70 × Janu	31011	CO
S005	Stone	Sandstone	Light grey	Smooth	28 ×		
G001	Granite	Granite	White/black	New, rough	142 Lime	ston	е
G002	Granite	Granite with cement	White/red	Weathered	101		
G003	Granite	Granite with cement	White/black	Weathered	$215 \times 57 \times 105$	0.41	0.89
G004	Granite	Granite	White/red/black	Weathered	$233\times60\times78$	0.54	0.93
G005	Granite	Granite	Red/black	Smooth	$125\times 50\times 111$	0.22	0.89
A001	Road asphalt	Asphalt with stone aggregate	Black/grey	Weathered	$190 \times 83 \times 68$	0.21	0.96
A002	Road asphalt	Asphalt with stone aggregate	Black/grey	Weathered	60 imes 100 imes 200	0.18	0.94
A003	Road asphalt	Asphalt with stone aggregate	Black/grey	Weathered	$60\times90\times150$	0.21	0.94
A004	Road asphalt	Asphalt with stone aggregate	Black/grey	Weathered	50 imes 120 imes 170	0.18	0.94
A005	Road asphalt	Asphalt with stone aggregate	Black/grey	Weathered	$55 \times 75 \times 130$	0.19	0.93
A006	Road asphalt	Asphalt with stone aggregate	Black/grey	Weathered	$30\times145\times180$	0.12	0.91
A007	Asphalt roofing shingle	Tarmac roofing paper	Grey	New	$3 \times 165 \times 170$	0.07	0.93
A008	Road asphalt	Tarmac	Black	Weathered	140 imes 25 imes 140	0.13	0.95
A009	Road asphalt	Tarmac	Black	Weathered	$21 \times 60 \times 85$	0.08	0.95
A010	Road asphalt	Tarmac	Black	Weathered	$21 \times 65 \times 80$	0.10	0.96
C001	Cement	Cement	Grey/ochre	Weathered	$397 \times 60 \times 140$	0.29	0.94
C002	Concrete	Concrete	Grey/white	New	$198 \times 53 \times 100$	0.21	0.92
C003	Cement	Cement	Grey	Weathered	268 imes 44 imes 148	0.23	0.91
C004	Concrete	Concrete	Grey	Weathered	110 imes 72 imes 85	0.37	0.95
C005	Cement	Cement	Grey	Weathered	45 imes 80 imes 115	0.41	0.95
C006	Concrete	Concrete	White	Weathered	$90\times150\times250$	0.42	0.95
C008	Concrete	Concrete	Grey	Weathered, rough	$20\times120\times108$	0.25	0.95
B001	Cement brick	Cement brick	Yellow	New	$200\times60\times100$	0.30	0.94
B002	Cement brick	Cement brick. with sand	Black/light grev	New	$200 \times 58 \times 98$	0.11	0.94

Surface Cover Materials

Surface Cover Monitoring

Satellite data products

Land Surface Temperature

London

London – 19 July 2016, 22:05 – MODIS LST product (K) – Resolution 1 km

London – 19 July 2016, 22:05 – Downscaled LST product (K) – Resolution 100 m

LST Evaluation with ASTER LST Products

> 2 August 2011 10.39

LST Evaluation with ASTER LST Products

LST (K)

7 500

290.000000

296.250000

302.500000

308,750000

315.000000

> 2 August 2011 10.39

LST Evaluation with ASTER LST Products

					Median		
		Root Mean		Mean	Absolute		
		Square Error		Absolute	Error		
Day/Night	Date	(RMSE)	Bias	Error (MAE)	(MdAE)	Quantile .25	Quantile .75
Day	2011.03.20	1.310	0.050	0.607	1.656	-1.475	1.763
Day	2011.08.02	1.340	0.193	0.667	1.650	-0.889	2.127
Day	2011.09.28	2.057	0.782	1.389	1.987	-0.223	2.871
Day	2012.03.22	2.521	0.658	1.362	2.566	-1.220	4.094
Day	2012.06.17	2.173	0.456	1.408	1.945	-1.219	2.631
Day	2014.03.28	1.795	0.584	0.847	2.245	-0.112	3.647
Day	2015.09.07	1.569	0.745	1.040	1.417	0.072	2.354
Day	2015.09.30	1.396	0.414	0.664	1.684	-0.229	2.735
Night	2013.10.30	0.757	-0.146	0.457	0.809	-1.121	0.381
Night	2015.02.22	1.448	0.803	1.000	1.510	0.390	2.295
Night	2015.08.17	0.907	0.209	0.581	0.971	-0.515	1.285

Urban LST in-situ

Downscaled LST validation

Satellite acquisition times (Basel)

Fluxes

 $Q^*, Q_H, Q_E, \Delta Q_S$

DART/Sentinel-2 Q* vs in-situ Q* for Basel

DART/Sentinel-2 Q* vs in-situ Q* for London

London Barbican

http://www.met.reading.ac.uk/micromet/scripts/plots/OptrisPI/C19/BCT_C19_dailyreport_main.html

ESTM:
$$\Delta Q_S = \sum_{i} \frac{\Delta T_i}{\Delta t} \varrho c_i \Delta x_i f_i$$

✓ Incorporates heat transfer through

the different elements

120

100

80

60

40

20

-20

-60

-80

0

Heat storage flux (W/m²)

Surface type	Element	k	рс	Materials and references
		(W m ⁻¹ K ⁻¹)	(MJ K ⁻¹ m ⁻³)	
Paved #1 (L+B)	ground	0.54	1.22	asphalt ¹ , concrete ¹ , gravel ¹ , lawn ²
Paved #2 (L+B)	ground	0.63	1.22	asphalt ¹ , concrete ¹ , gravel ¹
Paved #3 (L+B)	ground	0.73	1.21	gravel ¹ , steel ³ , wood ⁴
Paved (Barb.)	ground	0.97	1.69	concrete¹, ceramic³, soil⁵
Building #1 (L)	roof	0.63	1.06	ceramic ³ , slate ⁶ , concrete ¹ , insulation ⁴
	wall	0.85	1.29	stone ⁷ , concrete ¹ , brick ³ , glass ³
	internal	0.93	1 .5	concrete1
Building #2 (L)	roof	0.58	1.02	ceramic ³ , concrete ¹ , insulation ⁴
	wall	0.62	1.27	stone ⁷ , concrete ¹ , brick ³ , wood ⁴ , glass ³
	internal	0.93	1 .5	concrete1
Building #3 (L)	roof	0.25	1.12	ceramic ³ , slate ⁶ , wood ⁴ , insulation ⁴
	wall	0.24	0.75	brick ³ , wood ⁴ , insulation ⁴ , glass ³
	internal	0.93	1 .5	concrete1

Turbulent Heat Fluxes (Q_H , Q_F)

Aerodynamic Resistance Method (ARM) >

Air Temperature

Turbulent Heat Fluxes (Q_H)

Turbulent Heat Fluxes (Q_E)

Turbulent Heat Fluxes (Q_H , Q_E)

Turbulent Fluxes: evaluation with flux tower measurements BASEL

526850

526750

Both fluxes are generally underestimated if compared to measurements. Modeled Q_E in urban areas are small.

200

250

Turbulent Fluxes: evaluation with flux tower measurements LONDON

DJF MAM JJA SON

Both fluxes are generally underestimated if compared to measurements. Modeled Q_E in urban areas are small.

UEB Components Time Series

Day (●), night (*) one 100 m x 100 m pixel

Data availability

Net All-Wave Radiation flux (London)

Landsat local solar zenith angle (London)

Heat storage 20160713_1054 (Heraklion)

Downscaled Surface Temperature (Basel)

Latent heat flux (London)

Downscaled Surface Temperature (Heraklion)

	BA	NF	LU>	KES								2. 1.20
ome	About	Blog	Data	Publications	Contact	Project Members	News	Log in	Register	¥	8* ir	1 👼
OME	DATA											
ata												
eteorolo	ogical Station	n Networks										
eraklion	Basel	London										
ddy Cov	ariance and	Scintillome	try									
eraktion	Basel	London	1									
ubscribe	to URBANFL	UXES to ge	t access on	the public data								
The av	vailable da	ta, so far,	are liste	d below. Click	on a data tit	le to have the data o	downloaded.	You can	use the search field	d to query :	specific	data
ilter files												
Title						Temp	oral Extent		Contial Desolution			
						ionth	or or manorite		apatial Resolutio	n	File Size	0
leat sto	rage 2015100	02_1059 (Lo	ndon)			2015-	10-02 - 2015-10-	02	100 m	on	File Siz	0

2013-06-06 - 2017-04-29

2010-01-01 - 2016-08-31

2016-07-13 - 2016-07-13

2016-01-01 - 2016-12-31

2016-01-01 - 2016-12-31

2016-01-01 - 2016-12-31

100 m

100 m

100 m

100 m

100 m

100 m

2.04M

23.04M

26.68k

5.08M

18.56M

20.25M

Conclusions

- > URBANFLUXES implemented new urban surface **parameterization schemes**
- > Developed new synergistic algorithms for analysis of EO data
- > Achieved EO-based estimation of **UEB fluxes,** validated in London, Basel and Heraklion
- > Uncertainty in measurements impose large **uncertainties in UEB closure**; further research is necessary to further reduce the uncertainties
- > URBANFLUXES improved the current knowledge of the **role** of the different UEB fluxes **on UHI** and hence on urban climate and **energy consumption**
- > Developed tools for monitoring and evaluation of the implementation of climate change mitigation technologies, including Nature-Based Solutions (NBS)
- Results capable of supporting the development of Sentinels-based downstream services towards informing policy-making

URBANFLUXES is co-financed by "HORIZON 2020" EU Framework Programme