

BAQUNIN and **QA4EO**

BAQUNIN TEAM and friends

https://www.baqunin.eu/

OA4EO WPs

- **ACIX/CIMIX**: CBH+CF from Sky-Cameras and Lidar Data. *Brockmann, NASA-GSFC, Sapienza, Serco*
- **Lunar**: retrieval of trace gases and AOD from night-time (Lunar) PGN, AERONET and EUBREWNET measurements. ARPA VdA, LuftBlick, Sapienza, CNR-ISAC, Serco

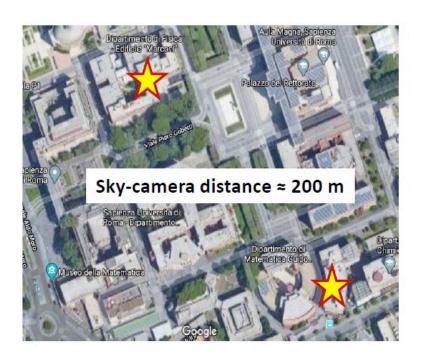
Scientific collaborations

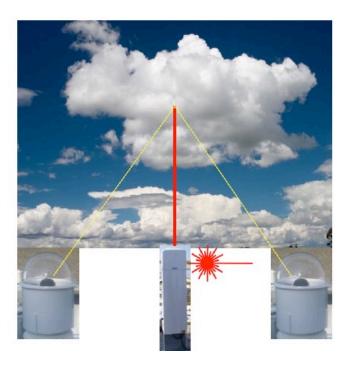
- Impact of NO₂ concentrations on AOD retrieval quality, Institute for Environmental Research & Sustainable Development, NOA, Greece, *Ioannis Panagiotis Raptis*
- Sea Breeze and Urban air quality, University of Reading, UK, Carlo Cafaro
- Aerosol retrieval from Pandora Almucantar measurements, LuftBlick, Austria, Axel Kreuter
- Enhanced GRASP retrieval of aerosols using Lidar, AERONET and PGN data (DIVA style), CNR-ISMAR, Italy, *Gianluigi Liberti*
- Retrieval of NO₂ profiles from Pandora Sky Measurements, Virginia Polytechnic Institute and State University, USA, Elena Spinei Lind
- Retrieval of AOD from AERONET measurements using SKYNET-Europe processors, University of Valencia, Spain, Victor Estelles

BAQUNIN instruments involved in QA4EO Work Packages

Instrument	Site	Status	QA4EO WP
PANDORA #115	CNR-ISAC	Maintenance	Lunar
PANDORA #117	APL	Operational	Lunar
PANDORA #138	CNR-IIA	Maintenance	Lunar
PYRANOMETER	APL	Operational	
SKY-CAMERA ESA	APL	Testing	Lunar
SKY-CAMERA #1 NASA	APL	Testing	ACIX/CMIX
SKY-CAMERA #2 NASA	APL	Testing	ACIX/CMIX
BREWER #067	APL	Operational	Lunar
METEO-STATION Sap	APL	Operational	
MWL-LIDAR	APL	Operational	ACIX/CMIX + Lunar
MFRSR	APL	Testing	
SODAR	APL	Operational	
CIMEL	APL	Operational	
POM-PREDE 01 upgraded Lunar	APL+campaigns	Testing	Lunar
POM-PREDE 01	APL	Operational	
POM-PREDE 02 Lunar	APL	To be procured	Lunar
MICROBAROMETER	APL	Operational	Lunar
AIR QUALITY STATION #1376	APL	Testing	Lunar
AIR QUALITY STATION #1379	APL	Testing	Lunar
WEBCAM Sard.Clim.	APL	Operational	
METEO-STATION Sard.Clim.	APL	Operational	
CEILOMETER (RAP)	APL	Testing	ACIX/CMIX + Lunar
CEILOMETER (SAP)	CNR-IIA	Maintenance	ACIX/CMIX + Lunar

Skynet Europe & International

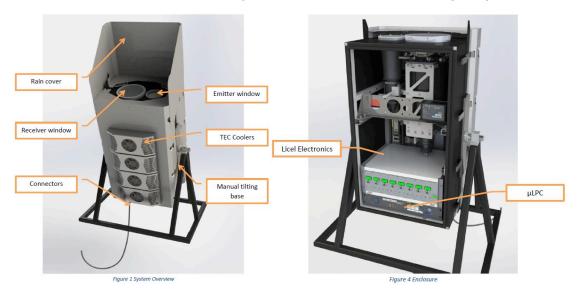


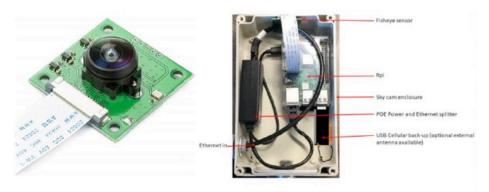


From last QA4EO WS (pre-pandemic) ...

Retrieval of cloud mask, cloud bottom height and, possibly, wind speed at cloud bottom using two sky-cameras and a ceilometer

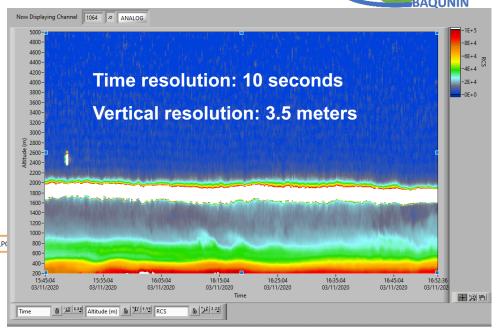
Sky-cameras will be installed on the roof of Marconi and Fermi building of Physics Department Ceilometer will be installed and operated on the roof of Fermi building

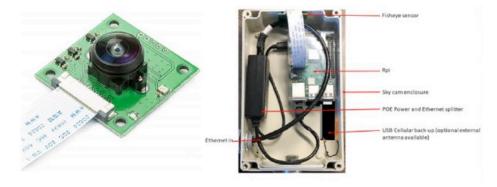




Automatic Lidar - Raymetrics Aerosol Profiles (APL)

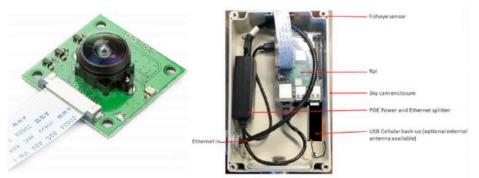
SkyCams - NASA-GSFC (APL)





Automatic Lidar - Raymetrics Aerosol Profiles (APL)

SkyCams - NASA-GSFC (APL)





Automatic Lidar - Raymetrics Aerosol Profiles (APL)

SkyCams - NASA-GSFC (APL)

QA4EO "Lunar" WP

Objectives:

Ц	o develop retrieval techniques for the analysis of nocturnal (lunar) aerosol and trace ga	ases
	pads using ground based photometer and spectrometer measurements	
	o pre-operationally retrieve and disseminate nocturnal (lunar) aerosol and trace ga	ases

- To validate satellite products retrieved from nocturnal (eclipsed) orbit measurements (e.g. from TIR, Aeolus, EarthCare)
- To investigate the day-night transition of photo-chemically active species

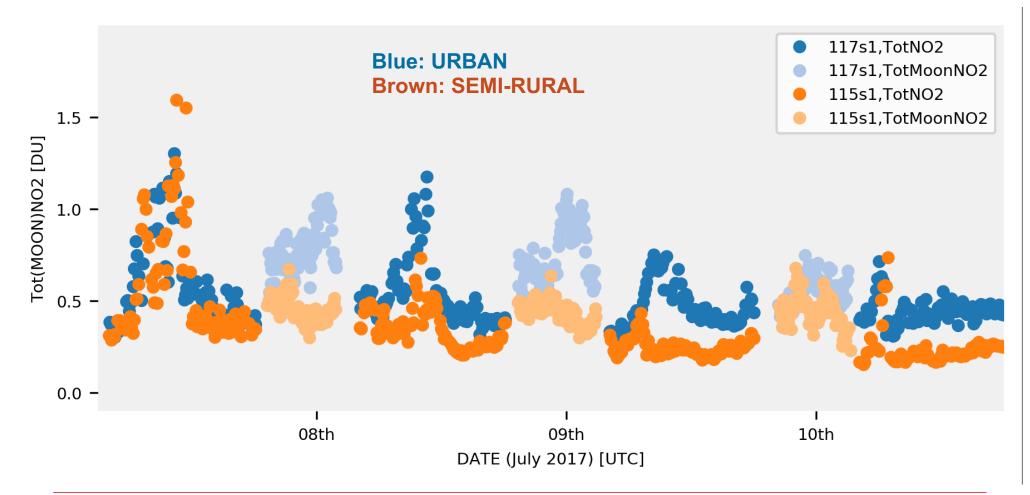
Consortium: Sapienza, Serco, CNR-ISAC, LuftBlick, ARPA Valle d'Aosta

Task 1: Instrumental set-up, operation/maintenance of lunar photometer (Lead: CNR-ISAC)

Task 2: Pandora lunar trace gas data production (Lead: LuftBlick)

Task 3: Brewer lunar trace gas and AOD data production (Lead: ARPA-Valle d'Aosta)

Task 4: Outreach (All)



QA4EO "Lunar" WP

Example of DAY+NIGHT NO₂ Total Column from Pan#117 and Pan#115 from July 7th to July 11th 2017 (LuftBlick, test data)

Dark colours: Direct Sun (daytime) Light colours: <u>Moon</u> (night-time)

QA4EO "candidate" WP

Impact of NO₂ total column on AERONET AOD 440nm retrieval

I.P. Raptis (NOA), S. Kazadzis (PMOD)

If not properly accounted for, NO₂ absorption in the 400-490 nm spectral region can introduce SIGNIFICANT OVERESTIAMATION of aerosol optical depth (AOD) from both Space and Ground based measurements.

Impacted Aerosol Parameters: AOD (440nm), Angstrom Exponent (UV-VIS)

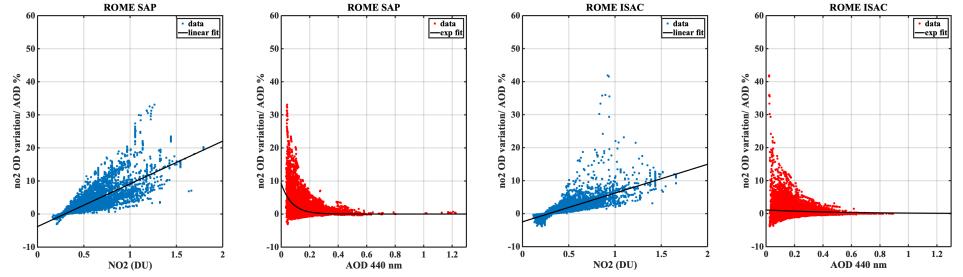
AERONET baseline: OMI NO2 climatology

TROPOMI (S5p-Innovation) baseline: no correction!

Using BAQUNIN PGN and AERONET data, NOA performed a sensitivity test:

- Level 1.5 AOD @440nm from APL and CNR-ISAC AERONET stations
- PGN NO₂ average of high quality data ±10 minute around AERONET measurement
- New AOD (AER PGN) vs. original (AER PGN)

Next slide: (AERONET-AER PGN)/AERONET vs. PGN NO₂ (blue) and AERONET (red)



QA4EO "candidate" WP

Preliminary results show that, in **urban** environment (Rome), the OMI NO₂ climatology is not sufficiently accurate: AOD < 0.2 can be significantly overestimated depending on NO₂ load.

Further studies are needed: new QA4EO WP?

Scientific articles submitted to peer journals

- Aerosol characteristics in urban environment and impact on UV index (AMT)
- VIEPI campaign (Sustainability)
- Impact of sea-breeze on urban aerosol and pollution (Urban Climate)
- Pandora NO2 reduction during Italian lockdown (AMT)

Scientific articles in preparation

- Gas and aerosol properties during EMERGE flights
- AerLocus: regional analysis of air quality from different data sources
- SODAR characterisation and uncertainty assessment
- SODAR-PANDORA data analysis for urban NO2 fluxes estimation

Post-doc (possibly during 2021): Mariela Lucía Aguilera Sammaritano, Instituto de Altos Estudios Espaciales Mario Gulich/CONAE, Argentina Scientific objectives:

- > Detection of smoke plumes over the city of Rome
- > Analysis of transport of pollutants from near (close to the city) and far (trans-continental) ranges
- > Impact of fire smoke plumes of Tropospheric and Urban Boundary Layer (UBL) air quality

Thank you for your attention! https://www.baqunin.eu/

