

SHIP DETECTION AND SEA CLUTTER CHARACTERISATION USING X&L – BAND FULL-POLARIMETRIC AIRBORNE SAR DATA

<u>S. Angelliaume</u>, Ph. Martineau (ONERA) Ph. Durand, T. Cussac (CNES)

retu/rn//o/n innovation

CNES/ONERA study of Space System Concept for maritime surveillance.

Allow observation of non-cooperative boats with temporal revisits compliant with the objectives of reactivity for maritime surveillance

Concept proposed by CNES (French Space Agency) based on radar operating with a very wide swath -> implies grazing conditions of acquisition.

Only few radar data on maritime surfaces available with this geometry: CNES decided to carry out **dedicated campaigns**, with ONERA airborne SAR sensor:

- February 2009 Mediterranean sea
- November / December 2011 Atlantic Ocean

CNES/ONERA study of Space System Concept for maritime surveillance.

Allow observation of non-cooperative boats with temporal revisits compliant with the objectives of reactivity for maritime surveillance

Concept proposed by CNES (French Space Agency) based on radar operating with a very wide swath -> implies grazing conditions of acquisition.

Only few radar data on maritime surfaces available with this geometry: CNES decided to carry out **dedicated campaigns**, with ONERA airborne SAR sensor:

- February 2009 Mediterranean sea
- November / December 2011 Atlantic Ocean

Context

Sea clutter Sigma0 vs:

- Incidence angle (mainly low grazing angle) Ward's modeling (*)
- Azimuth angle
- Sea state
- Polarization state
- Frequency band

Ship signature :

Depending on size, polarization, line of sight ...

Detection capability

Absolute measurements: calibration

SAR facility / ONERA airborne sensor

• Airborne platform: SETHI (ONERA)

2 pods under the wings (Falcon 20) Campaign: 5 flights during 6 days

- Acquisition parameters :
 - Waveform -> PolSAR dual-frequency simultaneously
 - X-band (Hh, Hv, Vh, Vv): B=300 MHz (rés 0.5m)
 - L-band (Hh, Hv, Vh, Vv): B=100 MHz (rés 1.5m)
 - Trajectory -> linear, octogonal and circular
 - Incidence angle: 80, 70 and 60°

Internal looking: Ship RCS study

External looking: Sea clutter study

14 reflectors along the swath: 1 dihedral and 13 trihedrals

Response stability in the swath: Amplitude stability

Response stability in the swath: Co-polar phase

cnes

Campaign of acquisition: region of interest

#1 Ushant traffic separation scheme:

- 3 flights -> sea state 4-5 & 5-6
- Boat -> large size (>100m)

Ground truth:

- •Sea state: buoy, Météo France, ...
- •AIS (provided by CETMEF)

t-Malo

VAL D'ÉTUDES SPATIALES

#1 Ushant traffic separation scheme: incidence 80°

#1 Ushant traffic separation scheme: incidence 80°

AIS		
	Ship #1	Ship #2
Lenght	105m	89m
Heading	212°	212°
Speed	7.2knts	7knts
Experimental RCS		
Hh	50 dBm ²	48 dBm ²
Hv	25 dBm ²	26 dBm ²
Vv	42 dBm ²	42 dBm ²

ONERA

IN TRENCH ADDRESS LA

Campaign of acquisition: region of interest

#2 10 NM South of Le Guilvinec :

1 flight -> sea state 3-4

Boat -> 2 cooperative boats (15 & 20m)

Circular acquisitions over clutter & cooperative boats

Ground truth:

• Tracking GPS for both cooperative ships and an Inertial Measurement Unit installed into one of them.

Saint-Malo

- AIS signal from the non-cooperative boat (CETMEF).
- Sea state: buoys, Signal station, Météo France, ...

Ground truth for #2: sea state information

I PENCE ADDITACES

ES SPATIALES

Sea clutter over the full 360° in azimuth: 80°

Azimuth 0° ⇔ Upwind / Azimuth 180° ⇔ Downwind

Sea clutter response: the physical behavior

Incidence 80°

Hh polarization

Vv polarization

Ground truth for #2: cooperative boat

Rescue (15.5 m)

Trawler (16m)

Ship measurements over the full 360° in azimuth: 70°

90° : cross viewing
0° : front viewing
180° : back viewing

Maximum RCS: cross viewing Dihedral effect (max Hv) in one of the two sides

Cam #3 Around Quiberon :

1 flight -> sea state 2-3

Boat -> opportunity and 4 Speedboats Ground truth:

- Tracking GPS for cooperative ship
- AIS signal from the non-cooperative boat (CETMEF).

aint-Malo

IONAL D'ÉTUDES SPATIALES

• Sea state: buoys, Signal station, Météo France, ...

#3 : Quiberon bay : incidence 70°

X-band polarimetric SAR imagery (R, G, B) = (Hh, Hv, Vv)

#3 : Quiberon bay : incidence 70°

X-band polarimetric SAR imagery (R, G, B) = (Hh, Hv, Vv)

Opportunity boat (48m, 12 knts):

RCS(Hh) = 41.2 dBm2 RCS(Hv) = 22.0 dBm2 RCS(Vh) = 22.3 dBm2 RCS(Vv) = 36.9 dBm2

Sea clutter response: the physical behavior

Incidence 70°

Hh polarization

Vv polarization

#3 : Quiberon bay : incidence 70°

Vv)

Sea response: multi-temporal analysis

les

Ongoing and future work

X-band SAR data now processed and calibrated

Ongoing work:

- Sea clutter response analysis (sea state, angles, polarization) done
- Ship RCS measurements (type of boat, angles, polarization) ongoing
- Detection capability (Ship to Clutter ratio) to do

Future work:

- Polarization synthesis -> study the best polarization state (Em & Re)
- Detection algorithm
- Multy-frequency analysis

ONERA has performed an extended airborne SAR campaign of acquisition dedicated to maritime surveillance analysis

PoISAR data perfectly calibrated (amplitude and phase) at low grazing angle

A special effort has been made on ground truth (sea state, wind, boat ...)

Step 1 : Sea clutter response is being analysed, Step 2 : Ship response will be analysed soon,

Step 3 : Detection capability study, polarization synthesis ...

Speedboats

X-band polarimetric SAR imagery (R, G, B) = (Hh, Vv, Vv)

Speed: 45 knt

THE PRENCH ADDRESS LA