

AGENCE FRANÇAISE POUR LA BIODIVERSITÉ

MINISTÈRE DE L'ENVIRONNEMENT

GRS PROCESSOR: GLINT REMOVAL FOR SENTINEL-2 SCHEME AND APPLICATION TO SENTINEL-2 AND LANDSAT-5, 7, 8

Development

Tristan Harmel (GET, GéoAzur) Jean-Michel Martinez (GET, IRD) Nathalie Reynaud (IRSTEA) Thierry Tormos (AFB)

tristan.harmel@ntymail.com

¢ cnes

French National Research Institute for Sustainable Development Institut de Recherche pour le Développement F R A N C E AGENCE FRANÇAISE POUR LA BIODIVERSITÉ

MINISTÈRE DE L'ENVIRONNEMENT

GRS PROCESSOR: GLINT REMOVAL FOR SENTINEL-2

Content

GRS birth

Theoretical principles

Technical algorithm

Current limitation

Perspectives

[Image S2A, Amazonian dam and re-suspension]

OBJECTIVES

<u>Observe</u>

Small to great lakes (French reservoirs, ponds, alpine lakes...)

Main rivers and estuaries on watershed scale (Amazonia, Nile, Mekong)

Characterize

Dissolved and particulate matter Biological activity, micro-algae (e.g., cyanobacteria) Water quality Sedimentary mass

Understand and forecast

Coupling observation data with ecological and thermo-dynamic models

Assess anthropological local and global impacts

Sedimentary fluxes

OBJECTIVES

<u>Observe</u>

Characterize

Pre-requisite decametric satellite observation:

Sentinel-2 and Landsat-8 best suited to

achieve these goals. But, we encountered big issues with atmospheric correction and **the**

"stochastic" presence of sunglint.

Understand and forecast

Birth of the GRS-algorithm

Simplified picture of the TOA signal over aquatic scene

Diffuse light: skylight, reflected skylight and water-leaving radiance Direct light: sunglint

SUNGLINT EXAMPLES

... from a ship

(standard digital camera)

... from a satellite

(image Sentinel-3/OLCI, May 10, 2016)

→ Increase probability/intensity of sunglint

SWIR: Water virtually totally absorbing

Diffuse light: skylight, reflected skylight Direct light: sunglint

SUNGLINT IN S2 AND LANDSAT IMAGERY

Image Sentinel-2, SWIR-band (~2200nm)

Patterns:

- Eddy with surfactant
- Wave packet (internals)

Ship wake

SWIR \rightarrow sunglint (direct light) \rightarrow BRDF of water surface

sunglint (direct light) radiance

SWIR \rightarrow sunglint (direct light) \rightarrow BRDF of water surface

Spectral dependence of refractive index, n, over visible-SWIR

 \rightarrow Spectral variation of a few percent

 \rightarrow Spectral variation of more than 30% from SWIR to blue \rightarrow must be accounted for to extrapolate BRDF retrieved in the SWIR

(GLINT REMOVAL FOR SENTINEL-2-LIKE DATA)

GRS: coded in python and fortran, main lib: snappy (ESA) Can process: Sentinel-2 A & B, Landsat 5, 7 & 8

Sentinel-2 image of 5 Aug. 2018, [2°W, 47°N]

Ancillary data

Aerosol optical thickness

Correction for diffuse atmospheric radiance

LUT: simulations from OSOAA code [Chami et al., 2015] Atmosphere/rough interface/water coupled system. Polarization accounted for.

Aerosol models (size lognormal, Mie calculations):

	$r_{g}\left(\mu m ight)$	σ	r _{eff} (µm)	n _r	n _i
fine	0.10	0.60	0.25	1.40	0.002
coarse	0.80	0.60	1.98	1.35	0.001

$$L_{sky} \left(\lambda, \tau_{a} \right) = \gamma L_{sky}^{fine} \left(\lambda, \tau_{a} \right) + \left(1 - \gamma \right) L_{sky}^{coarse} \left(\lambda, \tau_{a} \right)$$
Interpolated
within LUT

Effect of atmosphere thickness (e.g., elevated target):

Rayleigh optical thickness and radiance from LUT recalibrated on P(h)

GRS ALGORITHM IMPLEMENTED FOR S2 AND LANDSAT SERIES

- All parameters calculated for the RSR of the sensors (Landsat-5, 7, 8 and Seninel-2 A/B)
- Time range limited by CAMS data availability (2003-present)

ACIX II WORKSHOP, GRS PROCESSOR

VALIDATION WITH AERONET-OC DATA

16 AERONET-OC (14 coastal, 2 lake sites)

CURRENT LIMITATIONS

- Not coupled yet with masking procedure: "water", "clouds", "cloud shadow", "cliff shadow"...
- Need of exogenous data for aerosols (e.g., spectral optical thickness)
- Differences in viewing angles between spectral bands are not accounted for at the pixel level

CURRENT LIMITATIONS

Example of RGB S2A image where glinted pixels appear red, green and blue due to potential mis-coregitration, **time lag between band acquisition or changes in viewing angles between bands**.

PERSPECTIVES

- Coupling with detection chain for "water" and "mixed" pixels
- Exploitation of directional information from each spectral band and "multi-view" pixels (need of L1B data)
- Development of a coupled estimation of sunglint and aerosol (retrieval from direct and diffuse light)
- Coupling with SWOT data (\rightarrow sedimentary fluxes over 150 pre-defined sites)
- Evaluation of performances from public and our Cal/Val in situ data

AGENCE FRANÇAISE POUR LA BIODIVERSITÉ

MINISTÈRE DE L'ENVIRONNEMENT

French National Research Institute for Sustainable Development

Contact: tristan.harmel@ntymail.fr

THANK YOU