

European Space Agency

Final Presentation

Project No IDEAS+/SER/SUB/10: Development of a radiometric uncertainty tool for EO missions

05/07/2016, ESRIN Rome, Italy

Javier Gorroño

Index

- Introduction
 - Aim of research
 - Deliverables

- Sentinel-2 L1 Radiometric model
- L1 Radiometric Uncertainty contributors
- L1 Radiometric uncertainty contributors assessment
- Model combination and validation
- Radiometric uncertainty software implementation
- Novel techniques for the analysis of the TOA radiometric uncertainty
- The correlation in the spatial, spectral and temporal domain of the TOA reflectance/radiance pixel measurements
- The study of the noise in-flight using the Allan deviation
- S2-RUT future versions
- Extension to other Sentinel missions
- Towards a full chain uncertainty implementation

Aim of research

The design, development and implementation of techniques to estimate the radiometric uncertainty associated the TOA radiance/reflectance factor pixel measurements of EO satellite optical instruments.

CONSULT

Specific goals:

- End-to-end methodology: radiometric model → uncertainty contributors
 →uncertainty combination based on GUM (<u>BIPM, IEC et al. 2008</u>).
- Assessment of each one of the uncertainty contributors
- Validation of the combined standard uncertainty model vs. a MCM method, the impact of simplifications and the correlation between uncertainty contributors.
- The research for different software strategies to implement the tool and integrate as part of EO processing chain.
- A critical review of the metrological concepts used for the assessment of the radiometric uncertainty contributions of EO sensors in-flight.

Deliverables

NPL1 – Summary progress Report on Radiometric Performance & Uncertainty Analysis	 "Radiometric uncertainty per pixel for the Sentinel-2 L1C products ", Proc. SPIE 96391G (October 12, 2015) Minor studies: Diffuser calibration time analysis, ICCDB comments Presentation at CEOS WGCV IVOS, Toulouse, 19th November 2015. SPPA webpage 2nd version
NPL2 - Summary Progress Report on Radiometric Uncertainty Theory and Model Validation	Support to the development of S3-OLCI RUT Radiometric uncertainty Tool: technical guide Model validation 2 nd version
NPL3A - Software Tool (V1) NPL4A - Software (V1) Implementation Summary Report	 Poster presentation "Integration of the Sentinel-2 Radiometric Uncertainty Tool in the Sentinel Toolbox", ESA Living Planet Symposium, Prague (Czech Republic) 9-13 May 2016 (includes brief case study of Albufera lake, Valencia) Code evolution and release at: https://github.com/senbox-org/snap-rut
NPL5 - User guide including Case Studies on RUT Applications	 HTML user guide at: <u>https://github.com/senbox-org/snap-rut</u> Manuscript for <u>http://www.mdpi.com/journal/remotesensing</u> NOTE: due to the constrains of the peer-review process, the final form is not available yet.

Sentinel-2 L1 Radiometric model

BROCKMANN

Mathematical formulation based on the instrument and L1 processing chain.

L1 Radiometric Uncertainty contributors

BROCKMANN

 Uncertainty contributions linked to the Sentinel-2 L1 radiometric model. In dark orange contributions in RUTv1. In light orange contributions with negligible impact and, in white, contributions to be included in next versions.

L1B processing chain		L1C processing chain	
Contributor	Source	Contributor	Source
Instrument noise u_noise	X(p,l,b,d)	Diffuser reflectance absolute knowledge	$A(b) \rightarrow$
		u_diff_abs	$\rho_{sd}(p,\theta_{sd}(l),\varphi_{sd}(l))$
Out-of-field Stray-light –	X(p,l,b,d)	Diffuser reflectance temporal knowledge	$A(b) \rightarrow$
systematic part u_stray_sys		u_diff_temp	$\rho_{sd}(p,\theta_{sd}(l),\varphi_{sd}(l))$
Out-of-field Stray-light - random	X(p,l,b,d)	Angular diffuser knowledge- BRF effect	$A(b) \rightarrow$
part u_stray_sys			$\rho_{sd}(p,\theta_{sd}(l),\varphi_{sd}(l))$
Crosstalk u_xtalk	X(p,l,b,d)	Instrument noise and dark signal during	$A(b) \rightarrow Y_{sd}(p,l,b,d)$
		calibration	
Deconvolution residual	X(p,l,b,d)	Sun irradiance model	$A(b) \rightarrow E_{S}(b)$
Polarisation error	X(p,l,b,d)	Angular diffuser knowledge -cosine	$A(b) \rightarrow \cos(\theta_{Sd}(l))$
		effect u_diff_cos	
ADC quantisation u_adc	X(p,l,b,d)	Straylight in calibration mode – residual	$A(b) \rightarrow K_{stl}$
		u_diff_k	
Compression noise	X(p,l,b,d)	Sun-to-satellite distance knowledge	d(t)
Dark signal knowledge	DS(p,j,b,d)	Angular observation knowledge - cosine	$cos(\theta_S(i,j))$
		effect	
Dark signal stability u_ds	$PC_{masked}(l,b,$	Orthorectification uncertainty	$\rho_k(i,j)$
	<i>d</i>)	propagation	
Non-linearity and non-uniformity	$\gamma(p,b,d,Y)$	Spectral knowledge	$\rho_k(i,j)$
knowledge u_gamma			
Non-uniformity spectral residual	$\gamma(p,b,d,Y)$	Geometric knowledge	$\rho_k(i,j)$
L1B Image quantisation	$CN_{k,NTDI}(i,j)$	L1C Image quantisation u_ref_quant	$\rho_k(i,j)$

L1 Radiometric uncertainty contributors assessment

A more detailed description of each contributors can be found in the "RUT technical guide". Three main methods that can be identified in this research:

- 1. The pre-flight test documentation and Instrument Characterisation and Calibration DataBase (ICCDB).
- 2. Post-launch info and product information
- 3. Novel methodologies

"Proper estimation of uncertainties, rather than over-estimation, then leads to the increased probability of detecting systematic effects which may have been overlooked in the original analysis, which in turn leads to a better understanding of the practice of spectral radiometry." (Gardner 2004).

E.g. the *Out-of-Field Stray-light systematic part* is a known systematic effect (i.e. error) and not an uncertainty contributor. Assessed as 0.3% of L_{ref} (>2% in many low radiance meas.) and verified by setting a uniform source out of the FOV (0.14% of L_{ref}). Solution \rightarrow Redefine the ref. conversion

$$\rho_{k}(i,j) = \frac{\pi}{E_{S} \cdot d(t) \cdot \cos(\theta_{S}(i,j))} \cdot \left(\frac{CN_{k,NTDI}(i,j)}{A_{k,NTDI}} - 0.003 \cdot L_{ref}\right)$$

RUT to account for uncertainty associated with the correction.

Model combination and validation

 The model follows the GUM (international standard) to combine the L1 radiometric uncertainty.

$$U(R_{k}(i,j))[\%] = k \cdot u(R_{k}(i,j)) + u_{diff_temp}(t_{stamp}) + \frac{100 \cdot A_{k,NTDI} \cdot u_{stray_sys}}{CN_{k,NTDI}(i,j)}$$
$$u(R_{k}(i,j)) = \sqrt{\left(u_{ref_quant} / \sqrt{3}\right)^{2} + u_{diff}^{2} + u_{gamma}^{2} + u_{stray}^{2} + u_{LSB}^{2}}$$

No significant correlation between contributors simplifies the combination.

$$u_{LSB}[\%] = \sqrt{\left(\frac{100 \cdot u_{noise}}{CN_{k,NTDI}(i,j)}\right)^2 + u_{DS}^2 + u_{ADC}^2} \qquad u_{diff}[\%] = \sqrt{u_{diff_k}^2 + u_{diff_cos}(t_{stamp})^2 + u_{diff_abs}^2} \quad u_{stray}[\%] = \sqrt{u_{stray_rand}^2 + \left(\frac{100 \cdot A_{k,NTDI} \cdot u_{x_talk}}{CN_{k,NTDI}(i,j)}\right)^2}$$

- Normalised counts CN_{k,NTDI(i,j)} obtained from pixel-level inversion using the L1C product metadata
- u'_{ADC} and u'_{DS} require sensitivity coefficient c_y . Negligible \rightarrow WC of 10% error of 2 contributors in the global L1 budget. $u'_{ADC}[\%] = \frac{100 \cdot (u_{ADC}/\sqrt{3}) \cdot (C_{N_{k,NTDI}}(i, j))}{CN_{k,NTDI}(i, j)}$

Model combination and validation

NATIONAL Physical Laboratory

Brockmann Consult

Comparison to the Monte-Carlo method determined the validity of the central limit theorem. At low radiance values, unstable distribution due to quantisation

Radiometric uncertainty software implementation

- CONSULT Fully operational tool. Available for download as a plugin or to build it. https://github.com/senbox-org/snap-rut Sentinel-2 Radiometric Uncertainty Tool x
- HTML help integrated as part of the tool

A 10 11 08 a

File Edit View Analysis Layer Vector Raster Optical Tools Window Help

3802 004

2382 post

0*21*12* Ndegree 19"19'58" sidegree

728130.08 4357050.0m

Pixel Info #

a 4

sage-)

aģe-

vigtud

Bands

inck L

1:39.22

Product Explorer

4.8 * B [2000 unc k 1.0 =

The study of the noise in-flight using the Allan deviation

BROCKMANN

- Application of the Allan deviation to the S2 dark samples showed that depending on the pixel and band, the number of uncorrelated samples varies. Potential uses
 - 1. Optimise pixel averaging (standard deviation of the mean validation)
 - 2. Study the differences and evolution of the pixel noise
 - 3. Internal/external measurement contingencies (e.g. temperature drift)

S2-RUT future versions

Software consolidation

Move to one tile process and adapt to new product changes Read of sun angular grid and rest of masks (e.g. defective pixels) Further memory optimisation Embedding the uncertainty in the S2 L1C product Etc.

- Study and potential integration of novel uncertainty contributors: orthorectification, spectral response knowledge, polarisation...
- The investigation of the pixel covariance in the spatial, spectral and temporal domain.

Extension to other Sentinel missions

- Consult
 Code and implementation structure is reusable for several EO missions.
- Extending to other Sentinel missions:
 - This project supported the development of S3 OLCI uncertainty estimates. NPL project in the definition of SAR products uncertainty with S1 as example.

Towards a full chain uncertainty implementation

- TOA radiometric uncertainty per pixel is the first step that triggers questions as: Which is the uncertainty in a ROI? Which is the uncertainty in a L2 product?...
- ESA Projects as S2RadVal require the evaluation of an uncertainty in a ROI.
- Long-term goal: full implementation of uncertainty at any processing level and pixel combination. http://www.qa4ecv.eu/

