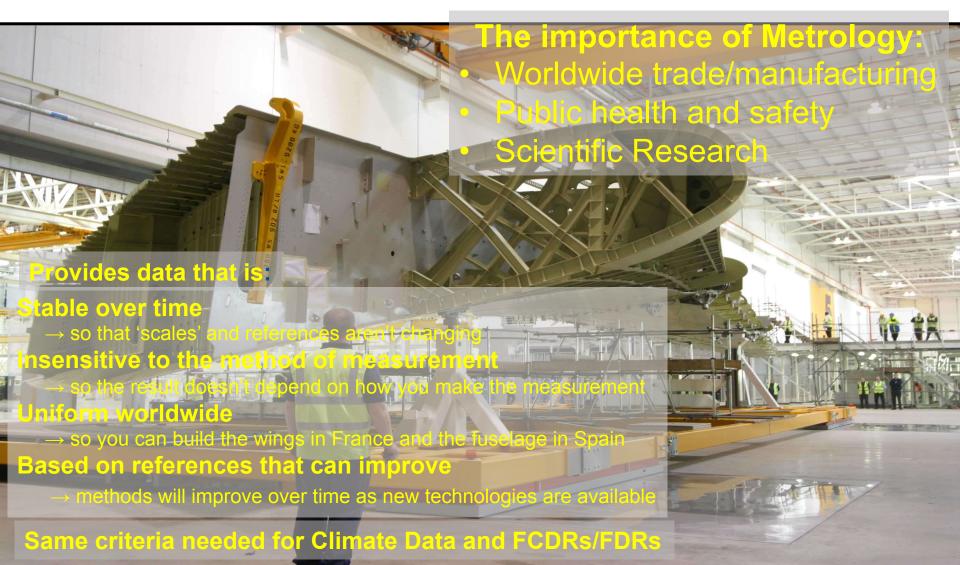


Principles of Metrology, FRM and their applicability to Earth Observation

Organisation of World Metrology

1875


- The Convention of the Metre (Convention du Mètre)
- International System of Units (SI) (Système International d'Unités) 1960
- Mutual Recognition Arrangement (CIPM-MRA) 1999

Bureau International des Poids et

 Redefinition of SI so that all units defined in terms of constants of nature

Metrology and SI

Magna Carta - 1215

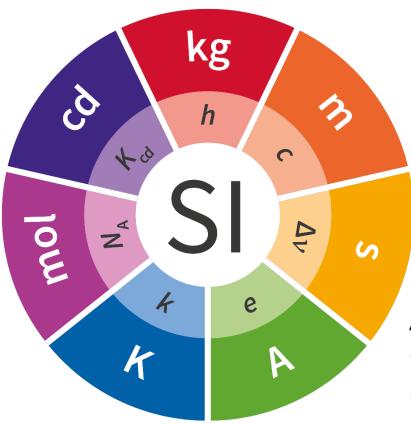
"There is to be one measure of wine and ale and corn within the realm, namely the London quarter, and one breadth of cloth, and it is to be the same with weights." 'measurements' of the Earth if they are to be trusted, meaningful and interoperable should be treated in the

ceable to international agr

(a) bits dry at strength of an order to an order of the point on the strength of the streng

For EO and Climate Lovs needs some translation & Oadaptation of Standards and methods. In the UK

7 etze internationa

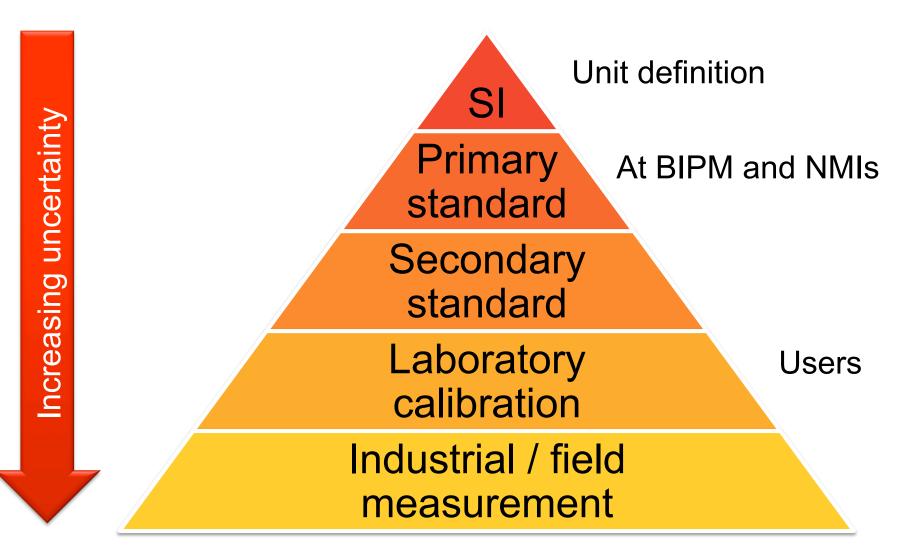


A QUALITY ASSURANCE FRAMEWORK FOR EARTH OBSERVATION

- The CEOS endorsed Quality Assurance framework for Earth Observation (QA4EO)
- Looks to make the GUM accessible to the EO community community-specific guidelines Click to close

Identifier	Description	
🍄 with t	(2010) QA4EO Principle: ata and derived products shall have asso them a fully traceable indicator of their qu documented and quantitatively tied to an international standard ideally SI	ality',
QA4EO-WGCV-IVO- CLP-006	Methodologies that should be applied to determine immersion factors for both radiance and irradiance underwater sensors	
QA4EO-WGCV-IVO- CLP-007	Absolute Calibration using Rayleigh Scattering	
QA4EO-WGCV-IVO- CLP-008	Protocol for the CEOS WGCV pilot Comparison of techniques/instruments used for vicarious calibration of land surface imaging through a ground reference standard test site	

Confidence in information - Trust in data/measurement


- Identical worldwide
- Century-long stability
- Absolute accuracy

Achieved through 3 principles:

- Traceability
- Uncertainty Analysis
- Comparison

Traceability

Traceability: An unbroken chain

S

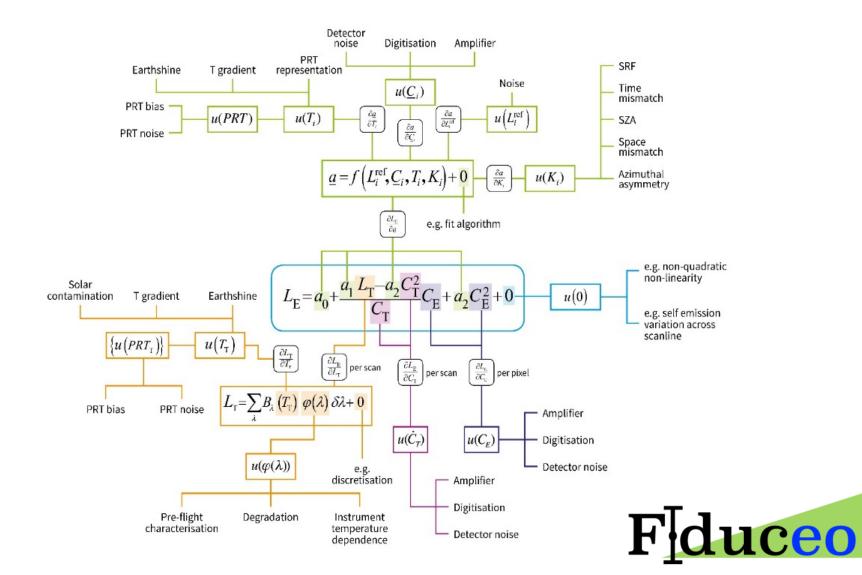
Transfer standards

Audits

Rigorous uncertainty analysis Documented procedures

Rigorous Uncertainty Analysis

BIPM JCGM 100: 2008 GUM 1995 with minor corrections Fvaluation of measurement data – Guide to the expression of uncertainty in measurement data – Guide to the expression data – Guide to – Gui	
First edition September 2008 ———————————————————————————————————	


The Guide to the expression of Uncertainty in Measurement (GUM)

- The foremost authority and guide to the expression and calculation of uncertainty in measurement science
- Written by the BIPM, ISO, etc.
- Covers a wide number of applications
- Also a set of supplements

http://www.bipm.org/en/publications/guides/gum.html

Evidencing traceability: e.g. AVHRR NPL

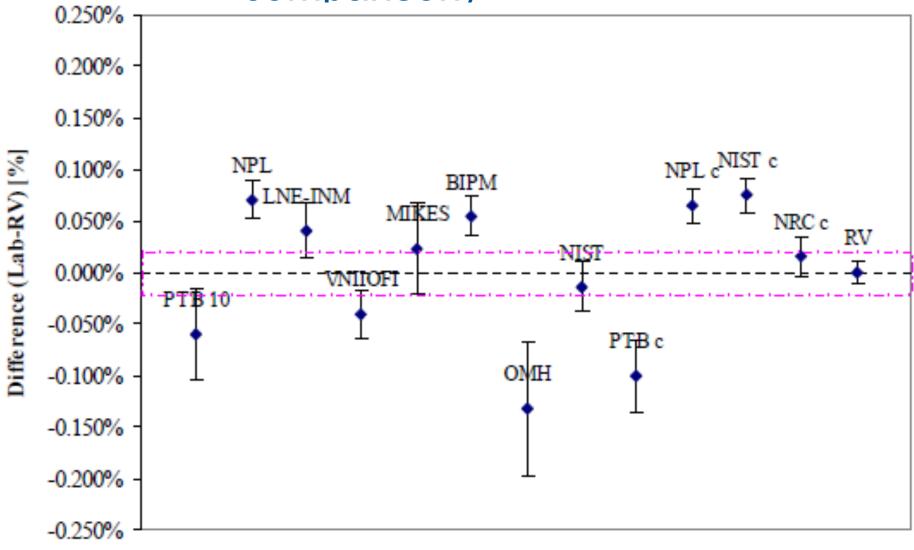

National Physical Laboratory

Table descriptor		Comments	Example	
Name of effect		A unique name	Internal calibration target count noise	
Affected term in m	neasurement function	Name and standard symbol	C ⁶ _{ICT}	
Instruments in the	series affected	Identifier	All instruments all satellites	
Correlation type	Pixel-to-pixel [pixels]	One of the types	Rectangular absolute	
and form	from scanline to scanline [scanlines]		Triangular relative	
	between images [images]		N/A for orbiting satellite	
	Between orbits [orbit]		Random	
	Over time [time]		Random	
Correlation scale	Pixel-to-pixel [pixels]	As needed to define type	[-∞,∞] (fully correlated across scan)	
	from scanline to scanline [scanlines]		n = 51 (51 scanlines averaged in rolling average)	
	between images [images]		N/A for orbiting satellite	
	Between orbits [orbit]		0	
	Over time [time]		0	
Channels/bands	List of channels / bands affected	Channel names	All channels	
	Error correlation coefficient matrix	A matrix	Identity matrix (diagonal).	
Uncertainty	PDF shape	Functional form	Gaussian	
	units	Units	Counts	
	magnitude		Given once per orbit file	
Sensitivity coefficient		Value, equation or parameterisation of sensitivity of measurand to term	$rac{\partial L_{\rm E}}{\partial \mathcal{C}_{\rm ICT}^{\prime 0}}$	

Lab-to-lab (results of a scientific comparison)

Lab

The traceability chain is broken

No reference in space ...

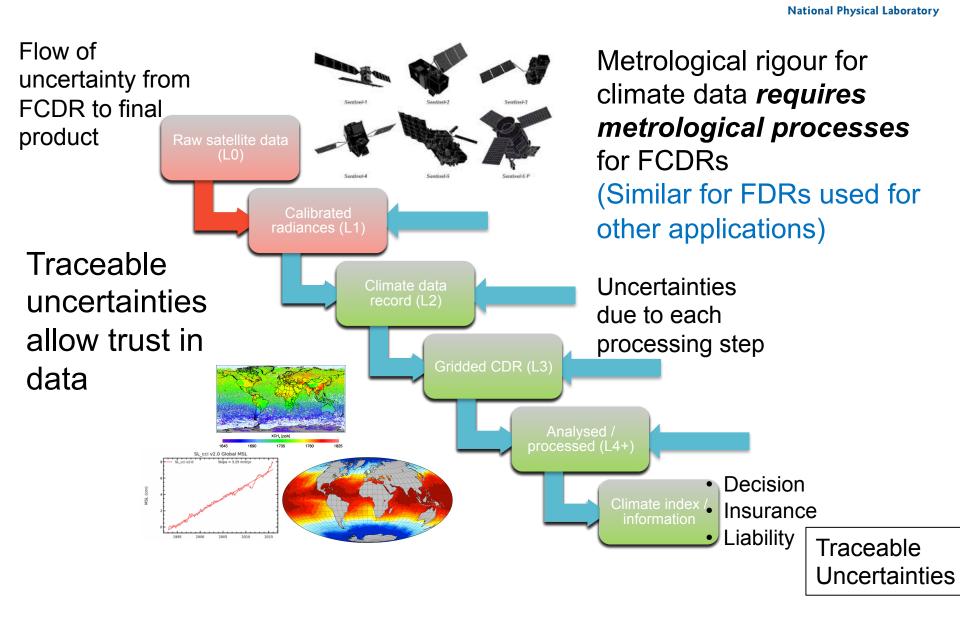
kg

h

SI

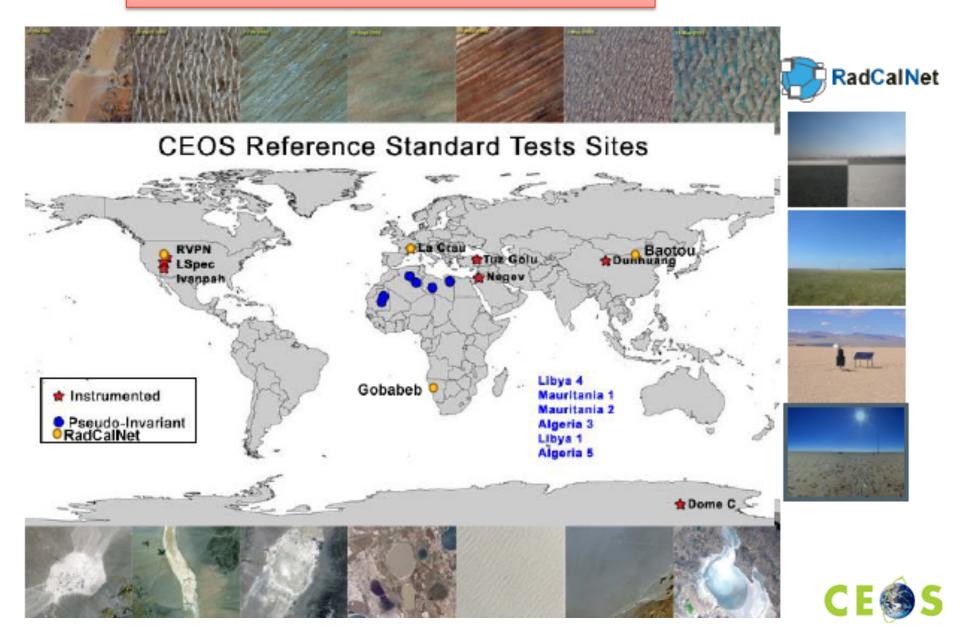
0

ઈ

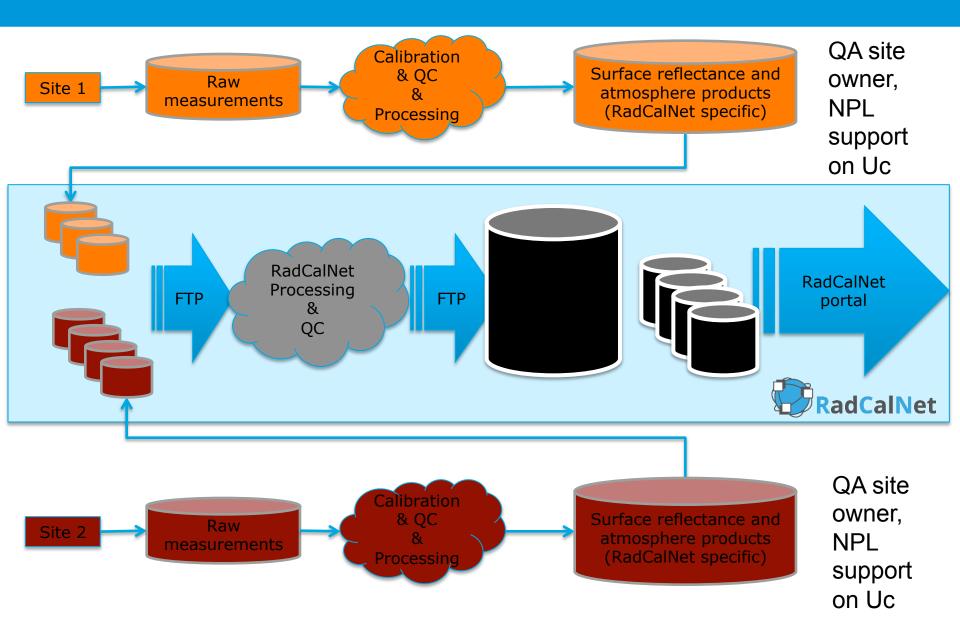

u al

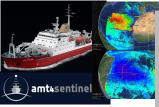
No reference in space ... yet

www.npl.co.uk/truths

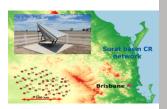

13

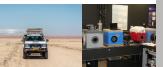
Climate most demanding requirement NPL <a>


Start with Level 1



Delivered through common processing chain evaluated for Uc




SI traceable validation (FRM4...) mitigate against data gaps & test/anchor FDRs

Fiducial Reference Measurements (FRM) are a sub-set of 'insitu' measurements of satellite measured parameters (L1/L2) that can be <u>compared</u> to those independently derived from a satellite to:

FRM4SAR

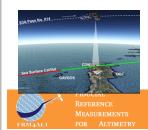
fiducial reference measurements for satellite ocean colour Validate sensor performance and any processing chair

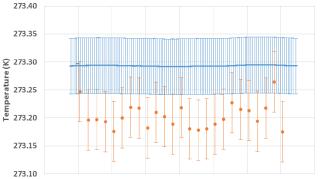
Provide a means to bridge any potential data-gaps

- acilitate interoperability between sensors and nchor/establish FDRs
 - Providing they are of sufficient accuracy!
- Noting that the comparison process has its own uncertainty

FRMs MUST:

- Have documented evidence of metrological traceability to SI or appropriate international community standard) including full uncertainty budget (instrumentation and useage), which must be at a level commensurate with the application.
- be independent of any satellite geophysical retrieval process.
 - e carried out following community agreed protocols

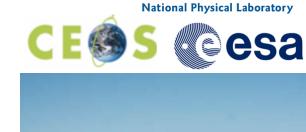




FRM comparisons

fi te

fiducial reference temperature measurements



09:30:14 09:33:07 09:36:00 09:38:53 09:41:46 09:44:38 09:47:31 09:50:24 09:53:17 Time (UTC)

Parameter	Type A Uncertainty in Value / %	Type B Uncertainty in Value / (appropriate units)	Uncertainty in Brightness temperature K
Repeatability of measurement	URepeat		URepeat
Reproducibility of measurement	URepro		URepro
Blackbody emissivity		Uemix	Uemis
BB Thermometer Calibration		Utherm	Utherm
BB cavity temperature non- uniformity		UUnif	Utinit
BB temperature stability		Ustab	Ustab
Reflected ambient radiation		URefl	URefl
Radiant heat/loss gain		URadiant	URadiant
Convective heat/loss gain		UConvect	UConvect
Primary Source		UPrim	UPrim
RMS total	$((u_{Repeat})^{2}+(u_{Repro})^{2})^{\frac{1}{2}}$		

Uc for Validation measurements MUST also be evaluated and compared to assess consistency with that derived by sensor

Goodle E

Future ? Extension adaptation of EDAP like processes

Colour coded information for easy assimilation by users Multi-layered 'maturity matrix'

Product Details	Product Generation	Ancillary Information	Uncertainty Characterisation	Validation
Product Information	Sensor Calibration & Characterisation Pre-Flight	Product Flags	Uncertainty Characterisation Method	Reference Data Representativeness
Availability & Accessibility	Sensor Calibration & Characterisation Post-Launch	Ancillary Data	Uncertainty Sources Included	Reference Data Quality
Product Format	Retrieval Algorithm Method		Uncertainty Values Provided	Validation Method
User Documentation	Retrieval Algorithm Tuning		Geolocation Uncertainty	Validation Results
Metrological Traceability Documentation	Internal Processes			

	Кеу
3	Not Assessed
1	lot Assessable
	Basic
l l	Intermediate
1	Good
	Excellent

Conclusion

- SI-Traceability including robust Uncertainty assessment and its evidence is recognised as critical for climate and risk/cost sensitive applications
 - End to end
 - Start with Level 1 level 2+
 - Documentation and comparison evidence critical
- Post-launch Cal/Val must methods must also be SI-traceable and Uncertainty associated with comparison methods included
- The concept of FRM4... initiatives provides a mechanism and template for consistent Satellite Validation
 - Potentially enhanced with EDAP like maturity matrix reporting
- Networks of FRM quality sites (underpinned by comparisons) provide QA framework for sustainable product interoperability and user confidence