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INTRODUCTION

The functional model of the gravity field recovery from GOCE gradiometry observations may be written as a
standard Gauss—Markov model
y=Ax+e D{y}=o*P . (1)

Here y denotes the vector of gradiometric data, e is the vector of measurement errors with E{e} = 0, D{y} =
02P~1, and ¢? is an a-priori variance factor. The design matrix A assigns the observations to the unknown
vector x of gravity potential coefficients. Consequently the best linear uniformly unbiased estimate reads

&= (ATPA)1AT Py . (2)

Due to the huge number of observations and of unknowns — it is expected to recover about 90.000 potential
coefficients from 100 million observations collected during the GOCE mission lifetime — the assembly of the
normal equation matrix and right-hand side presents a giant task, from a numerical point of view. With no
restrictions imposed on the satellite orbit and the data sampling, the normal matrix A7 PA will be nearly block—
structured but, nethertheless, dense. Moreover, the downward continuation process as well as the presence of
polar data gaps turnes the problem into an ill-posed one. This property translates into an ill-conditioned
normal equation system, and due to the amplification of data errors any solution (2) strongly oscillates and
will be physically meaningless. A way out of this problem is regularization. Tikhonov regularization (TR) is
the best—investigated regularization method, and has been shown to be numerically equivalent to some other
methods such as the least—squares collocation, ridge regression ([10]) and in particulary the so—called Kaula
stabilization. We will investigate two recent criteria for the selection of the regularization parameter, which
are capable for a large—scale problem like GOCE gradiometry. In particular, we will show that one of these
methods outperforms the Kaula method for spectral resolution above L a2 150. The TR version of (2) reads

zo = (ATPA+ oK) 1 AT Py (3)

with the regularization or smoothing parameter o and a symmetric positive definite regularization matrix
K = LTL. This estimate minimizes the penalized least-squares functional

Jo=(Az —y)"P(Az —y) +a o' Kz = ||Az —y[[p +a ||z]fk - (4)

It is well-known that (3) is numerically equivalent to an unbiased least—squares estimate £, if one introduces the
prior information E{z} = 0, D{z} = (0?/a) K~'. Identifying the diagonal part of this covariance matrix with
the signal variances from a degree-variance model or an existing satellite-derived geopotential model yields
the so-called Kaula stabilization, which in often used. Fig. 1 shows the degree—error rms of three different
solutions, obtained with different regularization parameters, as well as the signal spectrum from OSU91 used
in the simulation. For each individual solution z,, the degree—error rms is defined by

€ 2A+1

where ¢y, sim are the “true” OSU91 geopotential coefficients, and ¢j,,, 5, are the estimated geopotential
coefficients (i. e. the elements of z,). The Kaula matrix was chosen for K, and the three numerical values



were: @ = 1-10710 (the tiniest value that allowed Cholesky decomposition of the normal matrix), a = 1 (i. e.
the “nominal” Kaula—stabilized solution), a = 0.10 (the value obtained with the RGCV method). It is obvious
that some sort of stabilization is necessary in order to avoid strongly distorted solutions. With stabilization
a spectral resolution of around L = 270 is possible. The second fact is that by “tuning” the regularization
parameter the solution improves clearly in the high—frequency domain as well as in the low—frequency part
(which will partially be covered by SST measurements). However, the optimal regularization parameter with
respect to the true solution,

l
. e
Gmse = argmin — |log — 2|’ = argmin Y (2 + 1)(ef)? (6)
u

I=lmin
is only accessible in a simulation. In the following we investigate two strategies, which in the mathematical
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Figure 1: Degree—error rms. The solutions are computed with almost no regularization (dash—dotted), Kaula
stabilization (dotted), and TR with RGCV parameter choice (solid)

literature are referred to as heuristic a—posteriori methods: The L—curve criterion and a randomized version
of generalized cross—validation. A—posteriori means that one does not rely on prior smoothness assumptions
concerning the unknown solution but uses the actual observations to extract this information. Heuristic means
that it is not necessary to know exactly the variance factor o2 of the data. Non-heuristic methods like the
so—called discrepancy principle are known to be weak against inexact knowledge of the data error norm; and
we argue that this could be a clear disadvantage concerning GOCE spaceborn data because 1) the instrument
performance has never been validated in orbit but only under laboratory conditions, and 2) the actual obser-
vations will also be contaminated with an aliasing signal due to the unmodelled high frequencies of the true
gravitational field.

REGULARIZATION AND PARAMETER CHOICE METHODS
Parameter choice by the L—curve criterion

The Tikhonov L—curve is a parametric plot of the residual norm versus the norm of the solution for all valid
values of the regularization parameter. It is a conveniant graphical tool for displaying the trade—off between the
size of the regularized solution and its fit to the given data, as the regularization parameter varies. It is common
practice to plot the curve on a log-log scale, since only in this style the appearance of the curve is independent
with regard to the choice of units. Choosing the same norms that are penalized in the least—squares functional
(4), the graph of the L—curve is given by

((@),n(e)) = (0g]|4za — |, log llzallx) - (7)

For typical ill-posed problems, however, the L—curve in fact exhibits a distinct “L—shape” with a “corner point”,
where a certain balance in the trade-off is present. This situation can be observed very clearly in our GOCE



simulation, see figure 3 left. Following [4] the location of the L—curve corner may be used in order to approximate
the optimal regularization parameter. This will be called the “L—curve criterion” in the remainder of this paper.
The exact definition of the corner point is not a trivial problem and different methods have been proposed in
the literature. An obvious option is to maximize the curvature of the graph of (7) (see [4]),
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where &', ', € and 1" denote derivatives of £ and n with respect to a. It is common to replace the derivatives
in (8) by differences. An alternative definition is the following: A point is considered the corner of the L—curve,

if the curve is concave in its neighbourhood and the tangent at the point has a slope of —1. It can been shown
that this definition is equivalent to the formulation

(8)

Qlc(cury) — arg max

Qe(tang) = arg min [|Aza —yllp [|zall %, 9)

which is easier implementable than (8). One might justify the tangent definition (9) by the simple obser-
vation that the corner point typically connects a nearly vertical “leg” of the curve with a nearly horizontal
”leg”. Although the L—curve criterion cannot hide a certain lack in mathematical foundation, many researchers
investigated its application numerically with good results. In the context of gravity field determination from
airborne/satellite data, the L—curve criterion has been investigated by [1] and [9]. We mention that the criterion
proposed by [6] follows a similar line of reasoning and seems therefore related to the L—curve.

Parameter choice by generalized cross—validation

Generalized cross—validation (GCV) as a method for choosing the regularization parameter has been originally
proposed by [3]. The philosophy of cross—validation is based on the leave—out—one idea, which is well-known in
geodetic testing theory: Omitting the k—th observation yy, the respective leave-out—one solution vector a:Ef I can
be used to predict the “missing” observation. A good regularization parameter will produce solutions where

the misfit (AwEf ]) & — Yr is low in average over all possible y;. The generalized cross—validation parameter agcy
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Figure 2: Leave—out—one idea: GOCE true observations () and predicted ones (o)

is given by

n ||Aza —yl[?
(trace(I — Q))*
where Q° is the influence matrix defined by Az, = Q%Y. @,y estimates the minimizer of the unknown predictive
mean square error

Qgey = arg min (10)

1
Qpmse = arg min — ||Az, — Az||? . (11)
n

For problems with coloured noise like GOCE, the functionals (10), (11) have to be decorrelated using the weight
matrix P. Inserting further (3) for the definition of Q%, the GCV parameter can be re-written in the form

n |[Azs —yllp

P To = trace (L(ATPA+ aK)™'LT) . (12)

Ogey = arg min



For a large—scale problem like GOCE the last equation is better suited than (10) since here we have to determine
the trace of a w X u matrix, whereas the influence matrix Q* in (10) is of n x n dimension. However, with
90.000 unknowns to be determined from GOCE gradiometry the computation of the trace—term 7,, which
involves the inverse normal matrix, seems prohibitive. A way out is the use of trace—estimators ([2], [5]), and
the resulting algorithm is called Monte Carlo GCV. Trace-estimation goes as follows: Let z be a random vector
with E{z} = 0, D{z} = I; then

To=2"L(ATPA+ oK) 'LT> (13)
is an unbiased estimator of 7, where the variance of this estimator depends on the probability density function
of z. In practice, T, is computed in three steps: 1) a random vector z is generated, 2) one solves the auxiliary
system (ATPA + aK)q, = LTz, and finally 3) one computes 7, = 2% Lg,. Numerical benefit can be drawn
from the fact that the auxiliary system involves only an additional right-hand side vector LTz but the same
normal matrix than the “main” system in (3). The dispersion of the trace—estimate may be further reduced by
averaging single estimates obtained with different realizations of the random vector, but for large problems it is
usually sufficient to employ only one realization of z. Monte Carlo GCV with only one realization is also called
randomized cross—validation (RGCV). GCV methods are occasionally reported to perform weak in problems
with coloured noise; this means, when no decorrelation takes place in (12) at all. We adressed this question in
our numerical study, since decorrelation of the residual vector will be a time-consuming task in gradiometric
data analysis.

TEST SETUP AND SIMULATIONS

The performance of the two regularization parameter choice rules has been investigated using simulated data.
First, a circular orbit 258 km above the Earth’s surface was generated. The orbit has an inclination of 96.6°; it
is almost repeat with 961 orbit revolutions during 59.8 nodal days. The time for one revolution is about 5380
seconds. The difference between OSU91a and GRS80 defines the ‘true’ disturbing potential to be recovered.
Along the orbit second radial derivatives of the disturbing potential were generated at known positions with a
sampling rate of 5 seconds, which gives about one million observations. The normal equations were computed
up to degree and order 300. The observations were corrupted by coloured noise, generated from a power spectral
density function with a flat spectrum of 9 mE?/Hz between 0.005 Hz and 0.1 Hz and a 1/f2 behaviour between
3.7-10"* Hz and 0.005 Hz, see [8]. The time-wise approach was followed, i.e. the measurements are considered
as an (uninterrupted) time series along the satellite orbit, and the unknown disturbing potential is expressed
in orbital elements instead of the usual representation in an Earth-fixed coordinate system using spherical
coordinates. It is known that the time-wise approach yields a strictly block-diagonal normal matrix provided
that the orbit is circular and exactly repeat, the data period is an integer multiple of the repeat period, and
the data flow is uninterrupted. The generated orbit and the generated time series of gravity gradients fulfil
these requirements up to a slight non-closure of the orbit, which strictly spoken yields a dense normal matrix
with a strong block-diagonal dominance. This slight deviation from a strictly block-diagonal normal matrix was
neglected in the simulations, which causes small disturbancies in the estimated disturbing potential coefficients.
These small disturbancies could have been removed by iteration (e.g. [7]), but this has not been done, since the
effects on the solution were not significant.

RESULTS AND DISCUSSION
Regularization with signal constraints

In the following the question will be addressed whether the optimal parameter amse can be approached by the
parameter choice strategies discussed before, and what the effect of choosing different constraints in (4) would be.
The results are summarized in table 1. First we apply TR, where the matrix K is diagonal with elements 101974,
which is the inverse of the well-known Kaula rule. The L—curves (7), using unfiltered gradiometric residuals
as well as decorrelated residuals, are presented in figure 3 in double—logarithmic style. Both curves exhibit a
distinct shape: A nearly vertical part for smooth solutions, where the residual norm increases dramatically, and
a nearly horizontal leg for unstabilized, “rough” solutions with the residuals levelling on a low plateau. ;From
the figure it is clear that the corner points are located somewhere left to the optimal parameter apse = 0.1.
Thus, solutions computed with ajc will be “oversmooth”. Indeed we find qic(tang) = 3-0 and @i¢(cury) = 2.0 using
filtered residuals and aj¢(tang) = 4-0 and @i¢(curv) = 3.0 with unfiltered residuals. Finally we mention that it is



L-curve RGCV
choice of K | amse | -l | l-lle | M-l | Nl-lle
K ~1* 0.1 3.0 2.0 0.5 0.1
K~ 18 3-106 [1-10*[8-10°| 6-10® | 3-10°°
K~ 5.-10 1T [ 7107 [4-107[9.-10 1T [5-10 T

Table 1: Regularization parameter using L-curve criterion and randomized generalized cross-validation (RGCV)
for various choices of the regularization matrix K. || -||2: neglecting correlations, || - ||p: taking correlations into
account by filtering the residuals

absolutely necessary to measure the size of the solution in the same || - ||k—norm that is used in (4), i. e. here by
weighting the estimated geopotential coefficients according to Kaula’s law. Otherwise the respective curves are
wiggly with multiple “corners”, and cannot enable a unique interpretation. Next we apply randomized GCV.
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Figure 3: TR parameter choice criteria: L—curve (left), RGCV (right). Solid lines apply to filtered residuals,
dashed lines to unfiltered residuals

Figure 3 (right) shows on a semi-logarithmic scale the GCV function

|Azo — yl]

GCV(a):\/ﬁn—u-i-oﬂ_'

(14)

for a wide range of regularization parameters, and for ||-|| = || - ||2 (unfiltered residuals) as well as ||- || = || - ||p
(filtered residuals). Units are mE. Both curves are relatively flat in the domain of reasonable a’s, but the
minima agc, are indeed very close to amse = 0.1. With age, determined from filtered residuals the estimated
geopotential coefficients ¢}, 5, nearly coincide with the best-possible regularized solution! The overall results
are summarized in figure 4 (left), which shows the degree—error rms of the estimated potential coefficients ac-
cording to the parameter choice rules discussed before. Another possibility is regularization with first or second
(radial) derivative constraint, i. e. the matrix K is diagonal with elements 10'°(1+1)21* or 1019(1+1)2(1 +2)1*.
High degree coefficients are then more constrained than in the previous experiments. The results are given in
table 1. These values are generally smaller than those of the previous experiment, since the entries of K are
now orders of magnitude larger. The L—curve solutions are nethertheless oversmooth, especially if the tangent
definition (9) is applied. Randomized GCV again leads to parameters which are very close to the optimal qpge-
The overall results of this section are summarized in figure 4 (right), which shows the degree—error rms for
geopotential coefficient solutions according to the parameter choice rules discussed before.

Performance of the parameter choice strategies

The choice of the regularization parameter in GOCE gradiometric data analysis is an important issue, and
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Figure 4: Degree—error rms. TR-Solutions for signal constraint (left) and 2nd derivative constraint (right),
according to L—curve and RGCYV. Solid lines apply to decorrelated residuals, dashed lines to unfiltered residuals.

considerable improvements with regard to the Kaula method are possible when applying cross—validatory meth-
ods. We found that the L—curve method gives oversmooth solutions and should therefore be applied with care.
Different corner definitions lead to different solutions and we recommend to adhere to the curvature-based
definition and not to the tangent definition. We found that randomized cross—validation (RGCV) outperforms
the L—curve criterion by far and, when combined with an appropriate decorrelation, gives the best—possible
solution. Moreover, the RGCV solution is much better than the Kaula-stabilized solution. The price to be paid
is roughly the work of one additional solution of the normal equation system for a different right—hand side.
Filtering the residuals is generally helpful for finding a good regularization parameter. But even without any
decorrelation the RGCV solution is very close to the best—possible solution. The L—curve criterion seems to a
larger extend weak against unmodelled coloured noise.
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