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Abstract

The lecture aims at describing the ZOOM IN proposal by the Fraunhofer In-

stitute for Industrial Mathematics (ITWM, Kaiserslautern) in cooperation with

the Geomathematics Group of the University of Kaiserslautern within the frame-

work of the German geotechnology programme 'Observation of the System Earth

from Space`.

The research will be concentrated on the areas gravitational �eld, magnetic

�eld, and density variations. The application to a high{precision geoid based

on GOCE data products in combination with local airborne and/or terrestrial

observations will be accounted for. This area is dealt in parallel with multireso-

lution analysis of the magnetic �eld by (pre{)Maxwell wavelets, and the interior

density �eld by use of multiscale gravimetry in combination with seismic records.

ZOOM IN is intended to o�er multiscale models within the desired scales from

the global observation of our planet from space up to regional dimensions. Es-

sential tools are new mathematical methods for evaluating satellite data, based

on multiscale analysis by wavelets. The multiscale procedures shall be further

developed systematically and implemented as a homogeneous software struc-

ture. Thus, the user has an instrument on hand that is classi�ed according to

wavelength, frequency, space and time, which results in a better understand-

ing of the interrelations and interactions and a scale{speci�c observation of the

system Earth.
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Contents of the Lecture (Key{Word{Representation)

(Conventional) Spherical Harmonic Approximation

F (x) =
1X
n=0

2n+1X
k=1

Z



F (y)Yn;k(y) d!(y) Yn;k(x)

fYn;kg n=0;1;:::

k=1;:::;2n+1

: spherical harmonics on the (unit) sphere 


Character of the spherical harmonics: ideal frequency localization, no

space localization.

Comments:

(i) Fourier methods in terms of spherical harmonics are successful at picking

out frequencies from a (spherical) signal, but they are incapable of dealing

properly with data changing on small spatial scales.

(ii) The space evolution of the frequencies is not reected in the Fourier trans-

form in terms of non{space{localizing spherical harmonics.

(Formal) Convolution Against the Dirac Function(al)

F (x) =

Z



Æ(x; y)F (y) d!(x)

Æ(�; �): Dirac functional on the (unit) sphere 


Æ(x; y) =
1X
n=0

2n+1X
k=1

Æ^(n)Yn;k(x)Yn;k(y)

=
1X
n=0

2n+ 1

4�
Æ^(n)Pn

�
x

jxj
�
y

jyj

�
; x; y 2 


with Pn Legendre polynomial of degree n and

Æ^(n) = 1; n = 0; 1; : : : :

Character of Dirac function(als): no frequency localization, ideal space

localization

Multiscale philosophy: Medio tutissimus ibis.

Linear Approximation by Scaling Functions

F (x) = lim
�!0

Z



��(x; y)F (y) d!(y)

��(�; �): scaling function (see W. Freeden et al. (1998))

��(x; y) =
1X
n=0

2n+1X
k=1

�^
�
(n)Yn;k(x)Yn;k(y); x; y 2 
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with

��(x; y)�!
�!0

Æ(x; y) �^
�
(n)�!

�!0

1.

(space condition) (frequency condition)

Bilinear Approximation by Scaling Functions

F (x) = lim
�!0

Z



�(2)

�
(x; y)F (y) d!(y)

= lim
�!0

Z



��(x; z)

Z



��(z; y)F (y) d!(y) d!(z)

with

�(2)

�
(x; y) =

Z



��(x; z)��(z; y) d!(z)

and

�
(2)

� (x; y)�!
�!0

Æ(x; y) (�
(2)

� )^(n) = (�^
�
(n))2�!

�!0

1.

(space condition) (frequency condition)

Character of scaling functions: occurence of all stages of frequency as well

as space localization

uncertainty principle: (see W. Freeden (1998, 1999), W. Freeden, V. Michel

(1999))

ideal frequency localization no frequency localization

no space localization ideal space localization

 � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .�!

bandlimited/non{bandlimited

spherical harmonics kernel functions Dirac function(als)

K^(n) = Æn;l K^(n) = 0 K^(n) 6= 0 K^(n) = 1

for l � 0 for all n � N for in�nite n for all n

(kernel functions (radial basis function on the sphere 
))

K(x; y) =
1P
n=0

2n+1P
k=1

K^(n)Yn;k(x)Yn;k(y); x; y 2 


Comment:

Multiscale methods automatically adapt the amount of localization in space and

in frequency. Only a narrow space{window is needed to examine high{frequency

content, but a wide space{window is allowed when investigating low frequency

phenomena.
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Scale Discretization:

(�j)j=0;1;:::: sequence with lim
j!1

�j = 0.

Linear Approximation by Wavelet Functions

Z



	�j
(x; y)F (y) d!(y) =

Z



��j+1
(x; y)F (y) d!(y)

�

Z



��j
(x; y)F (y) d!(y)

with

	�j
(x; y) = ��j+1

(x; y)� ��j
(x; y) 	^

�j
(n) = �^

�j+1
(n)� �^

�j
(n).

(space condition) (frequency condition)

Reconstruction formula

F (x) =

Z



��0
(x; y)F (y) d!(y)

| {z }
low pass �lter

+ lim
J!1

J�1X
j=0

Z



	�j
(x; y)F (y) d!(y)

| {z }
band pass �lter

Bilinear Approximation by Wavelet Functions

	
(2)

�j (x; y) = �
(2)

�j+1(x; y)��
(2)

�j (x; y) (	^
�j
(n))2 = (�^

�j+1
(n))2 � (�^

�j
(n))2.

(space condition) (frequency condition)

F (x) =

Z




�(2)

�0
(x; y)F (y) d!y

| {z }
low pass �lter

+ lim
J!1

J�1X
j=0

Z




	�j
(x; y)(WT )j(F )(y) d!(y)

| {z }
band pass �lter

Wavelet transform

(WT )�j(F )(y) =

Z



	�j
(y; z)F (z) d!(z)
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Multiresolution Analysis

L�0
(F ) L�1

(F ) L�2
(F ) : : : �!

j!1

F

V�0
� V�1

� V�2
: : : = L2(
)

V�0
+ W�0

+ W�1
+ W�2

: : : = L2(
)

L�0
(F )+ B�0

(F ) + B�1
(F ) + B�2

(F )+ : : : = F

V�j : scale spaces,

L�j
(F ) =

Z



��j
(�; y)F (y) d!(y) 2 V�j ; j = 0; 1; : : :

W�j
: detail spaces

B�j
(F ) =

Z



	�j
(�; y)F (y) d!(y) 2 W�j

; j = 0; 1; : : : :

-100.0 0.0 100.0 200.0 -200.0 0.0 200.0

-200.0 0.0 200.0 400.0 -100.0 0.0 100.0
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-500.0 0.0 500.0 0.0 100.0

-500.0 0.0 500.0 -50.0 0.0 50.0

-500.0 0.0 500.0 -50.0 0.0 50.0

-500.0 0.0 500.0

Figure 1: Multiresolution of the EGM96{Modell (see Freeden, Glockner, Litzen-

berger (1999)): band{limited scale space (left column) and detail space (right

column), reconstruction of the model at scales 3 (top) to 8 (bottom)

6



Figure 2: Multiresolution of the Harmonic Density Variations from EGM96{

Modell (see V. Michel (1999)): non{band{limited scale space (left column) and

detail space (right column) reconstruction of the harmonic density at scales 4

(top) to 8 (bottom)
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Figure 3: Multiresolution of the Harmonic Density Variations from EGM96{

Modell (see V. Michel (1999)): non{band{limited scale space (left column) and

detail space (right column) reconstruction of the harmonic density at scales 9

(top) and 10 (bottom)
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Figure 4: Partial reconstructions of MAGSAT toroidal morning Y component

of Earth's magnetic �eld (from detail space 2 to detail space 6, the top level

picture shows the corresponding complete toroidal Y component), see M. Bayer

et al. (2001), W. Freeden, T. Maier (2001)
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Approximate Integration

L�j
(F ) =

Z



��j
(x; y)F (y) d!(y) �=

NjX
i=1

c
Nj

i
��j

(x; y
Nj

i
)F (y

Nj

i
);

B�j
(F ) =

Z



	�j
(x; y)F (y) d!(y) �=

NjX
i=1

c
Nj

i
	�j

(x; y
Nj

i
)F (y

Nj

i
):

Example: Weyl's method of equidistribution i.e. c
Nj

i
= 4�

Nj
(see W. Freeden et

al. (1998)).

Fast Wavelet Transform (Error Free Data)

(1) J suÆciently large:
J : F (x) �= F�J

(x) =
R



��J
(x; y)F (y) d!(y)

�=
NJP
i=1

aNJ

i
��J

(yNJ

i
; x)

('read in`{process)

with

aNJ = (aNJ

1
; : : : ; aNJ

NJ
)T ; aNJ

i
= cNJ

i
F (yNJ

i
)

(2) a
Nj

i
recursively calculable by a

Nj+1

i

(3) j = 0; : : : ; J � 1 : F�j
(x) �=

NjP
i=1

a
Nj

i
��j

(y
Nj

i
; x)

('recursion`{process)

a
Nj

i
�= c

Nj

i

Nj+1P
l=1

KV�j
(y

Nj

i
; y

Nj+1

l
) a

Nj+1

l

" " "
integration- reprokernel of known from

weights V�j data

decomposition scheme:

F �! aNJ �! aNJ�1 �! : : : �! aN0

# # #

L�j
(F ) L�j�1

(F ) L�0
(F )
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reconstruction scheme:

aN0 aN1 aN2

# # #

B�0
(F ) & B�1

(F ) & B�2
(F ) &

L�0
(F ) �! + �! L�1

(F ) �! + �! L�2
(F ) �! + : : :

Spectral Signal Variances

signal energy:

kFk2
L2(
)

=

Z



jF (y)j2 d!(y)

Parseval identity:

kFk2
L2(
)

=
X
n

X
k

(F^(n; k))
2

% -

degree order

Signal degree and order variances:

varn;k(F ) =

0
@Z




F (y)Yn;k(y) d!(y)

1
A

2

= (F^(n; k))
2

Signal degree variances:

varn(F ) =
2n+1X
k=1

varn;k(F )

Multiscale Signal Variances

signal energy:

kFk2
L2(
)

=

Z



jF (y)j2 d!(y)

Parseval identity:

kFk2
L2(
)

=
X
j

Z



0
BBB@

wavelet coeÆcientsz }| {Z



F (z)	�j
(y; z) d!(z)

1
CCCA

2

d!(y)

% -

scale space
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Signal scale and space variances:

varj;y(F ) =

0
@Z




F (z)	�j
(y; z) d!(z)

1
A

2

Signal scale variances:

varj(F ) =

Z



varj;y(F ) d!(y)

(see W. Freeden et al. (2001), W. Freeden, T. Maier (2001)).

Error A�ected Data

~F = F + ~"; ~" : observation noise:

Covariance

E [~"(x); ~"(y)] = K(x; y)

with

K(x; y) =
1X
n=0

2n+1X
k=1

K^(n; k)Yn;k(x)Yn;k(y); x; y 2 
 :

spectral degree and order covariances

covn;k(K) = K^(n; k) =

Z




Z




K(x; z)Yn;k(y)Yn;k(z) d!(x) d!(z)

% -

degree order

spectral degree covariances

covn(K) =
2n+1X
k=1

K^(n; k)

multiscale scale and space covariances

covj;y(K) =

Z



Z



K(x; z)	�j
(x; y)	�j

(z; y) d!(x) d!(z)

% -

scale space

multiscale scale covariances

covj(K) =

Z



covj;y(K) d!(y)
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Spectral Signal{to{Noise (Hard) Thresholding

signal dominates noise

varn;k( ~F ) � covn;k(K); (n; k) 2 Nres

noise dominates signal

varn;k( ~F ) < covn;k(K); (n; k) =2 Nres

Nres: degree and order resolution set.

Multiscale Signal{to{Noise (Hard) Thresholding

signal dominates noise

varj;y( ~F ) � covj;y(K); (j; y) 2 Zres

noise dominates signal

varj;y( ~F ) < covj;y(K); (j; y) =2 Zres

Zres: scale and space resolution set.

(Hard) Thresholding via Fast Wavelet Transform

integration- Reprokernel of
weight V�j

~a
Nj

i
=

z}|{
c
Nj

i

Nj+1X
l=1

z }| {
KV�

j
(y

Nj

i
; y

Nj+1

l
) a

Nj+1

l
(recursion)

(j = 0; : : : ; J � 1)

~a
Nj

i
= cNJ

i
~F (yNJ

i
) (read in)
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error{a�ected

data

�
~a
Nj

i

�2
=

�
c
Nj

i

�20@
Z




KV�j
(y; y

Nj

i
)

z }| {
~F (y) d!(y)

1
A
2

�

�
c
Nj

i

�2 Z




Z




K�j
(z; y

Nj

i
)K�j

(w; y
Nj

i
)K(z; w)| {z } d!(z) d!(w)

covariance

kernel

error{a�ected

data

�
~a
Nj

i

�2
=

�
c
Nj

i

�20@
Z




KV�j
(y; y

Nj

i
)

z }| {
~F (y) d!(y)

1
A
2

<
�
c
Nj

i

�2 Z




Z




K�j
(z; y

Nj

i
)K�j

(w; y
Nj

i
)K(z; w)| {z } d!(z) d!(w)

covariance

kernel

hard thresholding: 'keep` or 'kill` procedure

Consequences for GOCE Data Modelling

� regularization by multisresolution

(see W. Freeden et al. (1997), W. Freeden, F. Schneider (1998))

� availability of a stop strategy

(see W. Freeden, S. Pereverzev (2001), W. Freeden et al. (2001))

� no problems with gaps

� local improvement in global model

(see W. Freeden et al. (1998))

� fast wavelet transform

(see W. Freeden (1999), W. Freeden et al. (2001))

� adaptive use of millions of data, no linear system high accuracy resolution,

no numerical instability

(see W. Freeden (1999), F. Schneider (1997), W. Freeden, F. Schneider

(1998), W. Freeden, O. Glockner, R. Litzenberger (2000))

� denoising

(see W. Freeden et al. (1998), W. Freeden et al. (2001), W. Freeden, T.

Maier (2001))

� data compression

(see W. Freeden et al. (1998B))
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� validation on local domains (�rst attempts in W. Freeden, F. Schneider

(1998A))

Multiscale Philosophy of the Geomathematics Group:

approx. method Fourier splines/wavelets wavelets

orthogonal approximation non{orthogonal approximation

approx. structure bandlimited/non{bandlimited

polynomials kernels

zooming{out zooming{in

localization increasing frequency localization, decreasing frequency localization

decreasing space localization, increasing space localization

increasing correlation decreasing correlation

data structure equidistributed weakly irregular strongly

linear system linear system/num. integ. numerical integration

resolution long medium short

wavelengths
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