GRADIOMETRIC DATA ANALYSIS USING ICOSAHEDRAL GRIDS
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INTRODUCTION

The Gravity Field and Steady—State Ocean Circulation Explorer (GOCE) satellite mission will provide gravity
field information of unprecedented resolution and precision. But the computation of GOCE gravity field models
requires state—of—the—art numerical techniques, due to the vast amount of data and the number of unknowns.
This holds even, if space-domain representations of the gravity field are implemented directly in the recovery
process instead of the conventional spherical harmonic series. Unless very small regional gravity inversions are
considered, the construction of preconditioners plays an important role. Another important issue are means
to improve the stability of the least—squares problem. Space domain methods usually run into trouble for
unnecessary fine discretizations.

Gradiometric data analysis with space—domain representation will play an important role for GOCE regional
solutions, for calibration and data combination issues, or — if globally applied — for validation by a complete
independent technique. A way to improve the stability of the resulting least—squares systems and to facilitate
large—scale or global application is the use of icosahedral discretizations. This method as well as its combination
with multigrid iteration techniques will be discussed in this contribution.

GRADIOMETRIC DATA ANALYSIS USING SPACE-DOMAIN REPRESENTATION

A space—domain representation of the anomalous gravity field is usually combined with a frequency—domain
representation for modelling the known reference gravity field, i. e. a low—degree spherical harmonic expansion.
The unknown gravity field can, for instance, be modelled by a surface density or gravity anomalies target
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with spherical harmonics Y},,, the mean radius R of the earth, and extended Stokes—Function S. In this context,
“anomalies” are defined with respect to the chosen reference field and to a reference surface (Bjerhammar
sphere). The observables of GOCE gradiometry, gravity gradients I';; measured in an satellitefixed frame, can
thus be related to the unknown anomalies by
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Here U is the rotation matrix between earth—fixed and satellite—fixed frame. Finally, for the numerical treatment
and least—squares formulation of the problem, the target function dg in (1) has to be discretized using some
kind of finite element base functions. The method as described above has been investigated in various studies,
see e. g. [2] and the references therein, for different mission concepts and different observation types including
gradiometry as well as GPS. If the unknown target function represents gravity anomalies, the approach is known
as “inversion of the Stokes Integral”. In [4] this method has been used to study the influence of the polar gaps
and combination with airborne/terrestrial data for GOCE gravity anomaly recovery.

Space-domain representations like (1) come with advantages but also with drawbacks. From the idea of the
method it is clear that it can be applied both regionally and globally. Regional application means there is less
numerical burden with normal system accumulation, de—correlation of observations, and solution of the system,



since we have to deal with fewer unknowns. Consequently no further simplifications on the orbit or data sampling
need to be imposed. The method, although strictly speaking a “space—wise” approach, can account for coloured
noise models when the data is given as a time-series as shown in [4]. For global applications, however, the same
limitations than for other space—wise techniques hold. Combination with terrestrial data is generally simple,
and heterogeneous resolution can be achieved without problems. On the other hand, precautions must be taken
against wavelength errors and geographical truncation errors. The ill-conditionedness of the normal system due
to polar data gaps and downward continuation, as well as means to overcome this problem, have been discussed

in [4] and [6].

When regarding a high-resolution mission like GOCE, some challenging numerical tasks have to be faced. Two
problems, which deserve special attention in our gravity recovery method, will be covered in the next two
sections: 1. The normal equation systems are especially bad conditioned if one aims at the determination of
gravity anomalies defined on a conventional equi—angular geographical grid. 2. The normal equation systems
are dense and efficient preconditioners for their efficient solution have to be designed.

ICOSAHEDRAL PARTITIONING OF THE SPHERE

If the target function in (1) is globally discretized by means of a conventional equi-angular spherical grid, one
runs into problems due to the strong concentration of meshes near the north and south pole. An unnecessary
fine discretization causes strong ill-conditionedness, especially since the data will be sparse in these regions.
In [4] this problem has been circumvent by a 90°-rotation of the coordinate system. This, however, can only
improve the stability of regional solutions and does not help for global gravity field recovery. A more flexible
way out of this problem would be the use of (nearly) equi-area triangulations of the reference sphere , i. e.
the determination of gravity anomalies defined on non—conventional grids. Among others, icosahedral grids can
be used.

Icosahedral grids are derived easily from an initial icosaheder (Fig. 1, left) by consecutive sub—division of the
sides connecting neighbouring edges (see fig. 2). The edges of an icosaheder (or 12—edge polyhedron) constitute
an initial level-0 grid on a prescribing sphere, with the sides of the 20 triangular equi—sized meshes being great
circle segments. Fig. 1 (right) shows the global level-4 grid. These derived level-n grids do not strictly share
the equi—area property with the original level-0 grid. But the deviations are small, as can be seen from table
1. Table 1 shows the number of unknowns for a global discretization on certain levels, as well as the minimum
and maximum size of a triangular mesh. For GOCE, with an expected spherical harmonic resolution between
250 and 300, the levels 5 and 6 seem to be appropriate.
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Figure 1: Level-0 grid (icosaheder, left) and level-4 grid (right)

Icosahedral grids for the representation of the anomalous gravity field have been used e. g. in studies regarding
the gravimetric boundary value problem. Combination of icosahedral grids with multigrid iteration techniques
was first proposed by the authors of [7] for the numerical solution of the shallow—water equations on the sphere.
As in geodesy, the conventional long—established technique in this field is to model the governing equations by
spherical harmonics.



Figure 2: Consecutive subdivision

(Aw)'/? [deg]

Level Nt min max

4 | 5120 | 2,61 | 3,12
5 | 20480 | 1,30 | 1,56
6 | 81920065 | 0,78

Table 1: Level statistics. N7 is the number of triangles, (Aw)'/? would be the side lenght A\ = A¢ of an
equi—angular equatorial block of the same area.

MULTIGRID ITERATION TECHNIQUE

After choosing a certain grid level for the discretization, setting up observation equations, de—correlation or
weighting of observations, and accumulation of the normal matrix one ends up with the normal equation system

N¢zr =y, 3)

where N = ATPA + aK denotes the (a—regularized) normal matrix, y = A7 Pl the right-hand side vector,
and x the vector of unknown gravity anomalies. K is a suitable regularization matrix. Methods for the choice of
a and K are discussed in [4] and [6]. The problem now is that in global or large—scale regional gravity recovery
from GOCE the normal system will be large—sized and dense. Moreover, optimized regularization techniques
require the system to be solved for a multitude of possible values of «, thus for various condition numbers. An

iterative solution reads
2! =k C(y — N*z*) | (4)

where the preconditioning matrix C® should approximate (N®)~!. Usually it is more efficient to implement
the preconditioner in the conjugate gradient method instead of making direct use of the linear iteration (4).
Unfortunately, for the task of GOCE gravity field recovery with (1) at high resolution, most preconditioners
fail to work efficiently. A way out of this problem is the use of multigrid iteration techniques. For a general
background on multigrid see [1]. Let the solution we want to obtain from gradiometric data be discretized on
a level-n grid. The basic idea is that an approximate solution of the residual system in (4) can be computed
cheaply by applying standard relaxation methods. Since relaxation methods yield approximations with smooth
errors, a correction can be efficiently calculated on the coarser level-(n — 1) grid. This step indeed involves the
solution of the restricted normal system for the unknowns defined on the coarser grid. But the idea can be used
recursively by employing the even coarser level-(n — 2) grid. Only on the coarsest grid, say level-ng, a direct
solution has to be computed for the system

RN°R"z, = Ry . (5)

Here R is a sparse rectangular matrix which connects the base functions between the level-n grid and the
level-ng grid. Note that every time we “step down” one level of the icosahedral grids, the number of unknowns
decreases by a factor of 4. The idea is illustrated in fig. 3. This process, usually called multigrid iteration, serves
therefore as a fast solver of the level-n equations and simultaneously solves the level-(n — 1) and level-(n — 2)



equations down to the level ng. It can also be used as a preconditioner in the conjugate gradient method. Thus,
in principle a whole sequence of gravity field solutions of different resolution can be obtained in the same process.
In practice, it turns out that for badly conditioned — even if regularized — problems the best performance will
be obtained with employing not more than 3 grids. More details and an algorithmic description are given in [3].

- - leveln

-—---level-(n—1)

————— level-(n — 2) = level-ng

Figure 3: Possible cycles in multigrid iteration. A cycle is an iteration step consisting of relaxation or smoothing
(o) and coarse—grid correction (e)

There exists a vast amount of mathematical literature on multigrid methods, see [1]. For gravity field recovery
using space—domain representations these techniques have been shown to work efficiently by [3], [5], and [6].

SIMULATION EXAMPLE

In order to verify the concepts mentioned above and their applicability to the GOCE mission, a number of
simulations are currently carried out. In this paper we restrict ourselves to a simple example, to explain the
general set—up. An area with strong gravity signal and strong spatial variations was considered. See the fig.
4 for the “true” gravity anomalies from the EGM96 model. Then, for this area (plus an additional “overlap”
of approximately 8° in each direction to prevent for truncation errors), the representation (1) was discretized
using a portion of the level-5 grid. This means the unknowns of the problem were 2992 mean gravity anomalies
each representing a triangular area, which would correspond in size to an equitorial block of approximately
1.4° x 1.4°. The result is shown in fig. 5.

Figure 4: “True” gravity anomalies [mGal] with respect to the OSU91a reference field (Lyes = 36)

The simulated data set was provided by K. H. Ik, J. Kusche, and P. Visser in the framework of the TAG—
Special Commission 7 (“Satellite Gravity Field Missions”) and is general accessible via the internet home—page
http://wuw.geod.uni-bonn.de/SC7. It consists of a 30 days “pure gravitational”, nearly spherical (e = 0.001,
h = 250km), non—polar GOCE-orbit, which was used without further simplification for the setup of the ob-
servation equations. Along this orbit gravity gradient data was simulated for every 5sec. All three diagonal
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Figure 5: Recovered gravity anomalies [mGal] with respect to the OSU91a reference field (Lyer = 36)

components (along—track, cross—track, radial) have contributed in this example. All three components have
been artificially contaminated by coloured noise. As the “true” gravity field model for data simulation we used
the EGM96 coefficient set complete up to degree and order L = 300.

CONCLUSIONS

The use of non—conventional, icosahedral grids facilitates a stable formulation of the least—squares problem
of space—domain gravity recovery from gradiometric data. Moreover, it can be combined with fast multigrid
iteration techniques for the construction of preconditioners. This will enable space—domain gravity recovery for
GOCE on large—scale regional or even global scale.
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