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INTRODUCTION

The group from the Department of Planetary Geodesy of the Space Research Centre in Warsaw was involved for a long
time in the satellit e gradiometry problems. Publications by Krynski [13] and Latka [3] solved some important
theoretical problems before any technical attempts have been made. In the beginning of 1980-ties the project DIDEX
was proposed to the Intercosmos Program [14] based on the satellit e to satellit e tracking technique.  In last years the
effort was directed towards the Free Falling Gradiometer Project [14] and the development of the analytical expressions
reflecting various aspects of the problem of gradiometry [9]. Therefore, we received the final decision of ESA about
realisation of the GOCE project with great interest and we started immediately to work along the lines of GOCE design.
We suppose that some interesting contribution may be presented from our side as a part of the joint European effort.

FREE FALLING GRADIOMETER PROJECT

In CNR in Frascati (Italy) the new instrument for gradiometry has been developed which can be applied in a range of
missions. It consist of a cluster of accelerometers which connected to perpendicular axes yield the gravity gradient
tensor components. An appropriate geometrical arrangement of accelerometers and baselines allows for the
measurement of all elements of the gravity gradient tensor, in principle. The precision of the measurement is of the level
of 0.01 EU (1Etvos Unit = 10-9m s-2/m). The first mission, which is proposed for this system, is the free fall drop from
the stratospheric balloon. Such implementation was proposed by the Italian Space Agency ASI as a project called G-
zero or GIZERO [2]. Essential for this project is a payload that allows achieving zero gravity with residual noises
10-13g

�
Hz for about 25-30 seconds. These circumstances became an inspiration for the study by Zielinski and Lorezini

[14], with the main task to consider the possibili ty of the application of the Frascati accelerometr system inside the
GIZERO capsule to the Earth gravity field measurement.  This project is called Free Falli ng Gradiometer.
GIZERO is composed of a capsule with a vacuum chamber and tracking, control and telemetry systems. The capsule is
li fted to the altitude 40-45 km by the balloon. The time of ascent is about 3 hours. When the pre-programmed alti tude is
achieved the capsule is released and the whole probe starts its downfall . The same moment the payload inside the
vacuum chamber is released from the locking device at the ceil ing of the chamber. Because of the small difference in
velocity of the capsule, which is moving in the atmosphere and of the payload, which is moving in the high vacuum,
after 25-30 seconds the payload reaches the floor of the chamber and the experiment terminates. By the time the
payload released inside the capsule reaches the capsule’s floor, the capsule itself is fallen ca. 4.5 km.
Afterwards, the capsule is going to land. The payload is retained by an appropriate mechanism and the capsule recovery
phase starts with the sequence of opening of two progressive bigger parachutes. It is expected that the capsule will
splash down in the sea, than the rescue crew recovers it and it can be used for another mission.
Let us assume that the scientific payload consists of the three-axis gradiometer as described in [2] and assume that the
gradiometer is free fall ing (e.g. inside GIZERO). We need an information about the attitude of the system and, in
addition, about the position of the gradiometer in space referred to the Earth fixed coordinate system. To accomplish
this, two additional systems are necessary:
1.  The tracking system of the entire capsule by terrestrial stations;
2.    The internal tracking of the payload position inside of the chamber.
Simulations of this system have been done with the software package FREEFALL and GGTENSOR.

ANALYTICAL METHOD OF THE GRAVITY FIELD DETERMINATION FROM GRADIOMETRY

The studies have been undertaken devoted to the development of the analytical theory for orbital missions. In a work by
Petrovskaya [8] a new approach is developed for solving the spatial boundary value problem. One unique expression is



derived for the improvement of the potential coefficients Cnm, from the gravity gradient disturbance � � . This theory was
later applied to the case of the free fall ing body along the vertical l ine.
In another work [9] the theoretical study has been conducted devoted to the derivation of simple explicit analytical
formulae for evaluating the Earth’s potential coeff icients. The new approach, instead of a modified orthogonal basis, the
concept of modified observable is developed, with the standard basis of the solid spherical functions. A boundary value
equation is derived which represents a linear relation between the unknown potential coefficients Cnm and a slightly
modified gradio observable. This relation is used for deriving very simple quadrature formulae that determine Cnm

successively and uniquely up to arbitrary degree and order.
Initially the general problem of the gravity field determination from the gradiometry measurement have been considered
and some generalized approach was applied for the solution of the spatial boundary value problem with gradiometry
data [10] looking for the solution in terms of the potential coefficients Cnm. Later on, as the boundary values to be
determined the gravity anomaly  � g is accepted  as well , because it is the most widely used parameter in the local
gravity field presentation and is applicable as well for global modeling. As an observable there is a gravity gradient
tensor used, splinted in two parts: � ����	

0                                                                           (1)
where 
 0 refers to the normal field and � 
  is the anomalous part.
Different options concerning the number and the kind of components are considered.
The first case is discussed for the full gravity gradient tensor observed. The method implies that the approximate field is
known and we are looking for some correction parameters to the normal model [10]. Correspondingly, the unique
spatial boundary value relation is derived

)(
0

~ N	��� 	
                                                                          (2)

which  is the truncated to the degree N  spherical harmonics series with the unknown global potential coefficients Cnm.
Basing on this relation the potential coefficients can be derived by the least square algorithm.  Proceeding from the
expression for � 
   in terms of spherical harmonics, the same quantity is presented as a linear combination of the partial
derivatives of the disturbing potential T with respect to the geodetic coordinates { r, 
 , � } and then the corresponding
local Cartesian reference set { x,y,z} directly connected with the trajectory of the free falling chamber containing the
gradiometer. The above mentioned relation can be used for the point-wise testing of a global geopotential model.
Moreover, an explicit integral formula is derived for Cnm:

As a definite solution, the expression is derived allowing to evaluate the regional surface gravity anomaly � g.  For
solving this problem another basic relation is derived by means of downward continuation of  � �  from a spatial
observation domain to its projection onto a terrain region of interest. The formula (4) represents � g in form of a sum of
a Stokes integral, depending on  � � , and correction terms due to the downward continuation and the Earth’s non-
sphericity

This expression allows to recover the regional surface gravity anomaly � g on the basis of spatial gradiometry data. The
principal part of this formula is a reduced Stokes integral over a segment � 0 ( a spherical cap or a spherical rectangle) of
the unit sphere of integration, upon which the domain of gradiometry observations is projected. The integral depends on
the observable � �  minus the truncated expansion � � (N) induced by global geopotential model with coefficients Cnm.
In (4) a mean value is applied after averaging � �  over observation alti tudes of the free falli ng gradiometer

The third basic relation is derived between the observable � �  at the height h and the quantity � g  derived by means of
upward continuation of the surface gravity anomaly to the alti tude h

)4(
2

2H
cos

2
2sin4

0122
2� �� � ��������� ��� �! "#$ % &'() a

hhh

a

e
ad

a
g

* + ,-./ 0 1 2

1

)5(
1

12

h

h

dh
hh

)3(),(
~

R)2)(1(4
)(

0

3 2 3456789:;;< = >?@A B dY
r

nn

r
C nm

N
n

nm

)6(),,(
6

)',','(
4 0

2

2 CDECDA F rT
r

drgK
r

a GHIJH K L



where

The principle term in this expression is the radial derivative of the Poisson integral, depending on M g. Due to rapid
decreasing of the kernel function, the domain of integration can be reduced to the local area and this formula can be
very efficiently applied in the free fall ing gradiometer problem [10].
Another work concerns the case when only diagonal components of the gravity gradient tensor  N xx, N yy,  N zz  are
measured [11]. The theory was extended also to the situation when the measurements are done on board of the drifting
balloon or even an airplane what is typical for airborne gradiometry. Several forms of the solution have been derived,
both by downward and upward continuations. The first solution, given by formula (8), refers to the Earth’s surface. It
has a form of a Stokes-type integral, depending on the observable O N :P Q RSTQ RUQ V WXY )(

2sin4
Hhd

a
g                                                              (8)

where h is the mean observation altitude and H is the terrain height, and

                                                  Z [  = (2Tzz -Txx -Tyy)/3                                                                                                    (9)

Two modifications of this solution are proposed, by formulas (10), (11) and (12), (13). They contain a correction term
for its downward continuation to the Earth surface, taking into account the Earth ellipsoidal shape and surface
topography.

The spatial boundary value equation (14) has been derived referring to the mean altitude of gradiometry measurements
during a balloon mission. By restricting to the inner zones in the integrals in (14) one can obtain the numerical relation
between the gradiometry data and the surface anomaly. Such relation can be used for testing either the space ( \ ] ) or the
surface (\ g) data, depending on the problem under consideration.

It can be noted that the diagonal components, which are used as observables, contain more information of the field
than skew components. Their application allows easily summarizing the infinite series and deriving the solution for the
gravity anomaly in a closed form.

The derived solutions  can be further refined by taking into account some correction terms of higher order with the aid
of iteration procedures.

One can observe that the expressions obtained are characteristic for physical geodesy. They do not demand new
numerical procedures and can be treated by conventional numerical techniques applied in geodesy. By a similar
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approach the solutions can be found for the geoid undulation N and vertical deflections. It is only necessary that the
observations will cover some area above the chosen terrain region.
In the third work by Petrovskaya and � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �   � � � � � � � � � � � � � � � ¡ � � � � �   � � �
and gravity anomaly but from the airborne missions, allowing balloon as well as aircraft gradient measurements. This
approach is focused on more practical application of the gradiometry, going beyond the Free Falling Gradiometer
scheme, but this is a logic extension of the previously developed theory.
As before, the observable ¢ £  is applied, which can be considered as the anomaly of the full gravity gradient tensor or
the diagonal components only. Completely new results are derived in form of expressions:
For the height anomaly

where the kernel function is

For the gravity anomaly the solution is

where

NUMERICAL SIMULATIONS

The results presented above inspired authors to submit the proposal for participation in the preparation of the GOCE
project. We intend to use our analytical theory as well as the numerical procedures to the solution basing on the
simulated data. It is assumed that these data can be obtained from the SID consortium, the group of German and Dutch
institutes working on GOCE.
The theory developed above based on the geodetic approach to the Earth gravity field description was suitable for
setting up the software simulating the gravitational effects with the required precision. However this numerical
modeling is restricted, it does not take into account all forces which appear during the flight, like atmospheric drag,
magnetic forces etc.
Two separate programs have been prepared:

1. Program FREEFALL  calculates the trajectory of the free fall ing body in the assumed gravity field for the initial
position vector and velocity vector. Program accepts a 40¤ 40 gravity field model. Runge-Kutta numerical integration
procedure is applied, no atmospheric drag is taken into account. The program gives position and velocity of the fall ing
body every n second.
The input of the program is as following: geographic coordinates and the altitude of the initial point of the free fall as
well as the direction and magnitude of the initial velocity and in addition coordinates of the point of observation.
Actually, FREEFALL prepares input data for the next calculations with GGTENSOR program. 

2. Program GGTENSOR calculates six components of the second gradient of the perturbing potential T, for
positions calculated by the program FREEFALL. Potential T is calculated with the help of the Stokes formula and
gravity anomalies, which are given as follows:

a/ inner circle, integration with the anomaly block size 5’ ¥ 5’ ;
b/ middle circle, anomaly block size 15’ ¥ 15’ ;
c/ external square,  anomaly block size 10 ¥ 10;
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Gravity anomalies can be taken from the International Gravity Bureau data base or from other sources. Center of the
circles is always at the sub-satellit e point, the radius of each circle can be defined optionally.
With the above software package calculations have been performed for simulation of the FFG project. Simulations were
made for the ASI stratospheric balloon range Trapani-Milo, Sicil ly,( Î =38002’05”15, Ï =12037’19”5). Trajectory of the
probe was calculated with different initial conditions: height of the drop and initial velocity depending on the wind
speed. As the gravity field model the GRIM3 was used, truncated to 12Ð 12 degree and order. Along this trajectory six
gravity gradients were calculated with the anomalous gravity field modeled according to the International Gravity
Bureau data base containing 10 Ð 10 gravity anomalies.
The similar procedure can be used for the GOCE satellite. The program GGTENSOR may be useful for calculation of
the O–C values in observation equations when we use the approximate gravity field model – but no anomalies -which
we want to improve with the gradio measurements.

INFLUENCE OF THE DATA DISTRIBUTION

The numerical experiment, on arbitrary simulated gravity gradients at orbital height [3], using least square collocation,
gave interesting result confirming the possibili ty of accurate determination of gravity anomaly at the Earth surface. We
would like to continue this investigations using more realistic though still simulated data.
We are planning a numerical test using the simulated GOCE data in a regional frame. Our aim is to investigate the
influence of data configuration and its spatial distribution on the accuracy of gravity anomaly determination at the Earth
surface.  An other task it is the determination of the region optimal from point of view of feasibili ty taking in
consideration processing time and hardware limitations. Finall y it would be interesting to estimate the possibili ty of
joining the results from neighboring regions.
In the case of GOCE the order of magnitude of the components of the gradient tensor at satellit e altitude is Ñ zz =
2800EU, Ñ xx = Ñ yy = 1400 EU, Ñ xz = 10 EU, Ñ yz = Ñ xy  = 0. The simulated components of the gradient tensor Ñ xx, Ñ yy,Ñ zz presented in a local frame x, y, z with x-axis pointing to the east y-axis pointing to the north and z-axis pointing
radial outwards can be readily transformed to the frame of spherical co-ordinates. It wil l facilitate the use of the
spherical harmonics developments of gravity models.
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Analogously   FT   FFT   LT    LLT  for latitudinal and longitudinal components respectively.

One can easily represent above values in spherical harmonics development. For instance the radial component has
following form:
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For our investigations the method of least squares collocation will be used additionally for comparisons a numerical
integration should be used. The covariance function  K  can be determined on the basis of global gravity field models

 )(cos)(
0 ää å æç

n
nnPkK ,      )( 2

0

2
nm

n

n
nmn bak èç å æ                                                         (21)

nP - Legendre polynomial, é  -  spherical distance, a, b - full y normalized coefficients  of spherical development.



Eventually certain empirical models for given region ought to be taken in consideration. The law of covariance
propagation gives us possibilit y to merge different elements of gravity field such as gradients, gravity anomaly,
terrestrial gravimetric data and so on.

GEOID RECOVERY

The first gravimetric geoid for the territory of Poland computed by the collocation-integral method [10] comprised
about 6000 mean free-air gravity anomalies [9]. In such geoid determination, a number of error sources limits the
accuracy of the predicted geoid undulations. The most significant of these errors are due to the noisy data used in the
conventional geoid estimation: the geopotential model (GM), local gravity anomalies ê g and the heights. In [10] some
simple approaches for minimising truncation error for geoid height due to application of modified Stokes' integral have
been considered.
Therefore, it becomes apparent that the refinement of geoid determination methods can be achieved through analysis of
the properties of gravity field signals and errors provided by covariance functions, as well as through the use of optimal
data combination techniques. Two methods will be used to extract important properties of gravity field signals and
errors. Both the space domain method and frequency domain methods, which utili se the fast Fourier transform (FFT)
algorithm. The two methods have their advantages and disadvantages. In recent times, the spectral (frequency domain)
technique has been more popular due to its computational ease. The space domain method was used to estimate
empirical covariance functions of gravity anomalies for selected areas in Poland [8]. The resulting empirical covariance
functions were then modelled by modifying global covariance models.
Spectral techniques provide excellent means of extracting gravity field information contained in each of the gravity
field data with the view of determining the contribution to the gravity spectrum of each data type. Analysis of the
gravity field spectrum should involve critical examination of the spectral information from each data set and from a
combination of geopotential model (GM), local gravity data and heights, which respectively provide long, medium and
short wavelengths information of the gravity field. Such analysis would provide the necessary gravity field signal and
error covariance or power spectral density (PSD) functions required for geoid prediction techniques. In addition,
estimates of data sampling density derived from degree variances of the gravity signal would give a better picture of the
data requirement for geoid estimation with sub-decimetre accuracy.
Both the space domain and frequency domain methods will be critically examined to determine which method will be
better in estimating the covariance functions for a local area. It will also be necessary to know how the two methods
could be combined to achieve the best results in extracting spectral properties of the gravity field signals. In addition,
estimated PSD functions and degree variances should be thoroughly exploited in various spectral bands to determine the
geoid power contribution in various spectral bands, as well as to estimate the data resolution required for centimetre to
decimetre level of geoid accuracy.
Investigation of the contribution to geoid undulations of the GM coefficients and errors using the simulated coefficient
errors estimates for GOCE, in combination with local gravity in Stokes's integral, would provide the means of optimally
combining the two data types. Consequently, the effects of truncating the degree of the spherical harmonic expansion of
the GM in favour of using larger cap size to evaluate Stokes's integral need to be examined. In similar studies, an
increased area of integration would show improvement of the results for geoid estimates. The limit to which the cap size
should be increased should be investigated in order to derive an optimal cap size for Stokes's integral solution.
Critical analysis of the signal information from the short wavelength part of the gravity field spectrum in which the
topographic terrain corrections have a dominant role is required in order for the centimetre geoid to be achievable. Li
and Sideris established that the discrepancy between the gravimetric geoid and GPS/levell ing derived geoid is
correlated with the roughness of the topography. Therefore, rigorous modell ing of the effect of topography and density
variations especially in the mountainous areas would provide information on the recoverable geoid power in the very
high spectral band.
Proper description of the behaviour of data source errors are provided by suitable covariance function models. While
the error covariance function from the GM can be easily derived from the error degree variances of the coefficients,
empirical error covariance models have to be derived for the gravity and height data that will represent the actual error
behaviour for the local area. Barlik [2], ë ì í î ï ð ñ ò ó î ô õ ö ÷ ð ó ø ù ú û ü ú ÷ ó ð ý þ ÿ ò þ û ó ú ù ð ÷ ú � í ð � � ÿ þ ý ò ü ì � ð ÿ þ ÿ ú þ ð � � ð � þ û ÷ � � û
order to derive error models for gravity and heights that will actually represent the local area, models for areas with
different topography should be derived separately, and the overall geoid error from the data errors should be estimated
and modelled. In addition, a thorough analysis of errors from each of the data sources and combination of the data
would provide a good picture of internal geoid accuracy.
Therefore, it can be expected that spectral analysis of the gravity field data can provide the information required for
refining geoid estimation methods in order to obtain geoid with a cm level of accuracy in a local area. Information
contained in the spectrum of different data types would provide the geoid rms power from each of the data types and



their combination. Such information will be useful in determining the optimal procedures for combining the different
data for the geoid prediction methods.

CONCLUSIONS

The theory developed in [7] and [9] provides the proof that the regional solution for the gravity field mapping from the
satellit e gradiometry is possible. Advantage of such a solution can be seen when the problem arise to fill t erritorial gaps,
poorly covered by the terrestrial measurements. A good example of such a territory is the Mediterranean Sea. This is an
extremely important place from the point of view of plate tectonic theory and the earthquake prediction research but has
no uniform and dense gravimetry coverage. Application of the satell ite method combined with balloon- or airplane-
borne gradiometry measurement of this region as well as terrain topography and gravity anomalies could solve the
problem in the very effective way.
There are several problems to address:�  The choice of numerical procedures optimal from the point of view of economy of calculation and accuracy;�  The investigation of optimal data distribution and its spatial configuration, taking in consideration determined

area of interest and required accuracy.�  The influence of data distribution on stabili ty of the results.�  The investigation of the possibili ty of connecting the neighboring regions with sufficient accuracy. An
integration of neighboring regions could be an alternative for global treatment of data with enormous amount of
data.

Authors propose to use existing software and experience to analyze the simulated GOCE data in order to derive regional
solutions and to compare the results with solutions by other groups.
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