

Second Institute of Oceanography, SOA,PRC

New developments with Haiyang 1B (HY-1B) ocean color satellite (Report to 13th IOCCG)

Pan Delu

Second Institute of Oceanography, SOA, PRC

New developments with Haiyang 1B (HY-1B) ocean color satellite

- 1. Chinese satellite HY-1B in 2007
- 2. Calibration and validation
- 3 Application

Chinese Ocean color satellite HY-1B is on orbit since April. 2007

中国海洋 星的 展Satellite programs for marine remote sensing in China

1988 1990	1999	2002	2003	2007
FY-1A FY-1B	FY-1C	FY-1D		
		HY-1A		HY-1B
		SZ-3	SZ-5	
		SZ-4		

HY-1B Oceanic Satellite

Second ocean color satellite of China, HY-1B was launched by Long March rocket, in 11, April, 2007.

Sponsored by State Oceanic Administration, (SOA), Manufactured by the Chinese Academy of Space Technology (CAST)

HY-1BSatellite and orbit characteristics

Orbit type	Near Circular and near				
	sun-synchronous				
Equator crossing local	10:30-11:30am (descending node)				
time					
Altitude	798km				
Inclination	98.8 deg				
Period	100.8 minute				
Repeat observation period	1days for COCTS, 7days for CZI				
Mass	350kg				
Payload	COCTS and CZI				
Attitude control	3 axis stabilized				
Downlink frequency	X-band				
TT&C link	S-band				
Designed life time	3 years				
Launch	April,11,2007 by using Long				
	March 4				
Manufacturer	CAST				

HY-1B Payload

- COCTS- Chinese Ocean
 Color and Temperature Scanner
 by SITP
- 2. CZI- Coastal Zone Imager

(CCD Cameral) by CAST

The properties of HY-1 with comparing the other ocean color satellites

Nation/area	USA	PRC	Japan	PRC	PRC	PRC	Taiwan China	Europe	USA
Sat./Sensor	CZCS/ Nimbus	VHRSR/ FY-1A/B	OCTS/ ADIOS	VHRSR/ FY-1C	COCTS HY-1A/B	ICZ HY-1 A/B	OCI/ ROCSAT1	Envisat MERIS	SeaWiFS/ SeaSTAR
Life (year)	1978-88	1990-91	1996-97.6	1999-	2002/2007-	2002/2007-	1998-	2002-	1997-
FOV (°)	78.68	110.8	80.0	110.8			60	68.5	116.6
Period (mun)	104.07	102.76	100.8	102.76	100.8	100.8	96.6		98.88
Inclin. (°)	99.28	98.9	98.6	98.9	98.8	98.8	35	98.55	98.2
Scan.Rate (s)	0.12375	1/6	1.0	1/6	1/6	1/6	1/9		1/6
Alti. (KM)	955	888.8	791	870	798	798	600	800	705
Flight dir.	ascend.	Descend.	descend.	descend.	descend.	descend.		descend.	descend.
ECT	11:00am	7:55am	10:30am	9:00 am	10:00 am	10:00 am	9:00-15:00	10:00 am	12:00noon
Pixels/Line	1968	2048	2222	2048	1024	2048	860	2241	1285
Tilt (°)	0^{0} ,± 20^{0}	00	$0^{0},\pm 20^{0}$	0 ⁰	00	00	00	0 ⁰	$0^{0},\pm 20^{0}$
Digitization	8bit	8 bit	10 bit	10 bit	10 bit	10 bit	10 bit	16 bit	10 bit
Channel 1 2 3 4 5 6 7 8 9 10 11 12 13 14	± 10nm 440 520 560 670 0.7-0.8u 10.5-12.5	(μ) 0.58-0.60 0.725-11.0 0.48-0.53 0.53-0.58 10.5-12.5	± 10nm 412 443 490 520 565 665 765±20 865±20 3.7 µ 8.5 µ 11 µ 12 µ	(nm) 0.43-0.48 0.48-0.53 0.53-0.58 0.58-0.68 0.84-0.89 0.9-0.965 1.58-1.64µ 3.55-3.93µ 10.3-11.3µ 11.5-12.5µ	± 10 nm 410 443 490 520 565 670 (A:730 -770) (B:740-760) 845-885 10.3-11.4µ 11.4-12.5µ	(nm) HY-1A 420-500 520-600 610-690 760-890 HY-1B 433-455 555-575 655-675 675-695	(nm) 433-453 480-500 500-520 545-565 660-680 845-855	± 10nm 412.5 442.5 490 510 560 620 665 681.25±7.5 708.75 753.75±7.5 760.62±3.7 778.75±15 865±20 885	± 10nm 412 443 490 510 555 670 765± 20 865± 20

Major parameters of COCTS and CZI

COCTS	CZI
1.1km	0.25km
1400km/166	500km/2048
4	
5%	5%
10bit/pixel	12bit/pixel
2.6616Mbps	2.6616Mbps
	The state of the s
10%	10%
	1.1km 1400km/166 4 5% 10bit/pixel 2.6616Mbps

HY-1B/COCTS bands and detection object

Wave band(µm)	Target
0.402~0.422	Yellow substance, water pollution
0.433~0.453	Absorption of chlorophyll
0.480~0.500	Chlorophyll, sea water optics sea ice Pollutants, shallow sea topography
0.510~0.530	Chlorophyll, water depth, Sediment of low concentration
0.555~0.575	Chlorophyll, Sediment of low concentration
0.660~0.680	Peak of fluorescence, Sediment of high concentration, pollution, atmospheric correction, aerosols
0.740~0.760	Sediment of high concentration, atmospheric correction
0.845~0.880	atmospheric correction, water vapor
10.3~11.4	SST, sea ice, temperature of cloud top
11.4~12.5	SST, sea ice, temperature of cloud top

HY-1B/CZI bands and detection object

Wave band(µm)	Target
0.433~0.453	pollution, vegetation, ocean, color ice, shallow sea topography
0.555~0.575	Sediment, pollution, vegetation ice, coast zone
0.655~0.675	Sediment, soil ,water vapor
0.675~0.695	soil, water vapor, atmospheric correction

HY-1B Ground Station Location

HY-1B SATELLITE GROUND STATION

(1)Beijing (NSOAS/SOA)

Receive raw data in real time acquiring, processing, archiving and managing, distributing and analyzing the HY-1 mission

(2)Hangzhou (SIO/SOA)

Receive raw data in real time acquiring, processing, archiving and managing, applying and analyzing the HY-1 mission

(3) SanYa

Receive raw data in real time and transfer to Beijing

4) Mudanjiang just being build.

HY-1B
20 April
First
COCTS Image

HY-1B 20 April First CZI Image

Chinese Ocean Satellite programs in next 10 years

	2002	2007	2009	2010	2012	2015
	HY-1A	HY-1B	HY-1C		HY-1D	
·			HY-2A		HY-2B	HY-2C
				\rightarrow HY-3A	A	HY-3B

New developments with Haiyang 1B (HY-1B) ocean color satellite

- 1. Chinese satellite HY-1B in 2007
- 2. Calibration and validation
- 3 Application

Satellite cross calibration SeaWiFS/COCTS

水色波段交叉定 系数

波段	偏置	增益	相 系数	准方差	方差 / 均
	(offset)	(gain)			
1			0.9833	0.2285	0.0228
2			0.9891	0.2028	0.0218
3			0.9913	0.1835	0.0254
4			0.9925	0.1721	0.0301
5			0.9918	0.1705	0.0389
6			0.9791	0.1463	0.0682
7			0.9719	0.1050	0.0848
8			0.9298	0.1143	0.1505

$$L_{t}' = offset + gain \times L_{t}$$

Radiance comparing

Water leaving radiance from calibration data

Water leaving radiance comparing with Aqua/MODIS

Satellite product comparison between HY-1B and Aqua/MODIS

HY-1B 20 May, 2007 Chl a

HY-1B 20 May, 2007 TSM

Monthly Chla in May by HY-1B/COCTS

Monthly TSM in May by HY-1B/COCT

Monthly SST in May by HY-1B/COCTS

Contour map of Monthly Chl a of HY-1B

Hanoi

卫星遥感水体叶绿素浓度专题图

Contour map of Monthly SST a of HY-1B

Satellite-derived comparing with Aqua/MODIS in May

Satellite product comparison between HY-1B and Aqua/MODIS (SST)

New developments with Haiyang 1B (HY-1B) ocean color satellite

- 1. Chinese satellite HY-1B in 2007
- 2. Calibration and validation
- 3 , Application.

- HY-1B data merging with other ocean color data
 - -SeaWiFS, MODIS, MERIS

ESA-MOST Dragon Programme

Marine Remote Sensing Data Application and Mapping Toolbox

Pan Delu, Bai Yan. SOED/SIO/SOA. Hangzhou, 2007

Ocean color training involved in <u>ESA-MOST Dragon Programme</u> in Oct,15-20, Hangzhou, China

ESA-MOST Dragon Programme

--- Ocean color training exercise

In the training course, we will do A small project

to generate the water quality classification image by ocean color satellite data (a local example in East China Sea) to go through the major functions of MAPP.

What can you get from MAPP?

With the MAPP software, it is easy to:

- a) Display the Level 2 satellite data from different space agency, including MERIS from ESA, SeaWiFS and MODIS from NASA, and Chinese ocean color satellite series, like COCTS/HY-1B.
- b) Subset your Region of Interesting (ROI), with several way of area definition;
- c) Evaluate the satellite-derived product using the in situ data set.
- d) Merging the multiple sensors data to improve the data coverage of user desired area and time span.
- e) Generate the water quality satellite products (total suspended material, water transparency, particle organic carbon, etc.) with some published algorithms, or user-defined local algorithms with the Editor of function expression;
- f) Map the satellite water quality classification image using several satellite products and methods of water quality assessment.

General idea

- Step 1: <u>Data input and display</u>, importing the L2 data of MERIS, MODIS, SeaWiFS and COCTS/HY-1B, then convert the L2 data into the MAPP.SOA format;
- Step 2: <u>Data collection</u>, selecting the sample points (ROI region) from multiple satellites products;
- Step 3: <u>Data merging</u>, merging the MERIS and MODIS satellite data with the normalization;
- Step 4: Water quality product, retrieving the water quality parameter (such as SDD, TSM, POC, etc.) from the Level 3 ocean color products (e.g. Lwn);
- Step 5: Water quality classification, using the satellite-deriver water quality products OD for the water quality classification mapping. SeaWiFS L2 data, COC

— Specify the product subset

Image display (1)

Data comparison

e.g. MERIS200310270208.soa

SeaWiFS200310270404.soa

Water qualityclassification

— Water quality classification

Satellite-derived Water Quality Classification 118E 120E 122E 126E LegendGrade I Grade II 40N Grade IV Grade V 38N 36N 34N 32N 30N 28N

Office: SOED/SIO/SOA

Datum Time: 2003-10-27

- * The properties of COCTS/HY-1B is operation since May,2007.
- * The radiance of COCTS/HY-1B needs to be calibrated and the calibrated data is reasonable for ocean color mapping.
- * Marine Remote Sensing Data Application and Mapping Toolbox is useful for HY-1B data merger with other color data and its application, such as coastal water quality mornitering.

Thanks

二所海洋水色遥感 Ocean Color RS Group, SIO, SOA

