













































- Urban planning and Earth system science communities need spatially disaggregated Q<sub>F</sub>.
- Not possible to derive it by in-situ flux measurements.
- The estimation of Q<sub>F</sub> spatial patterns by current EO systems is a challenge.
- Major challenge: the innovative exploitation of the Copernicus Sentinels synergistic observations to estimate Q<sub>F</sub> spatiotemporal patterns.





### **URBANFLUXES**

- to exploit EO to improve the accuracy of Q\* and ΔQs calculation;
- to improve EO-based methods to estimate Q<sub>H</sub> and Q<sub>E</sub> and to validate them using flux measurement by EC, or scintillometry;
- to employ energy budget closure to estimate Q<sub>F</sub> spatial patterns at city scale and local scale;
- to specify and analyse the uncertainties;
- to evaluate the products comparing with independent methods;
- To exploit Sentinels 2/3 synergies to retrieve UEB fluxes at the local scale, with the frequency of Sentinel 3 acquisitions.











- - ✓ Surface temperature
  - ✓ Soil moisture/temperature
  - ✓ Air temperature
  - ✓ Relative humidity
  - ✓ Wind vector





































#### Parameters:

- thermal properties (volumetric heat capacity, thermal conductivity)  $\rho C_i$ ,  $k_i$
- thicknesses for different element types  $\Delta x_i$
- element fractions  $-f_i$
- morphology  $z_h$ , H/W
- internal elements optical properties  $\lambda_i$ ,  $\varepsilon_i$
- number of rooms per floor  $n_{\text{room}}$

#### Variables:

- surface temperatures T<sub>i</sub>
- outdoor air temperature  $T_{\text{oair}}$
- indoor air temperature  $T_{\text{iair}}$

#### London

| Element        | Layer | Material           | Δx (m)    | k (W K <sup>-1</sup> m <sup>-1</sup> ) | ρC (MJ K-1 m-3) |
|----------------|-------|--------------------|-----------|----------------------------------------|-----------------|
| roof           | 1     | concrete 3         | 0.2 †     | 0.5 1                                  | 0.84 1          |
|                | 2     | insulation †       | 0.1 †     | 0.03 1                                 | 0.056 1         |
|                | 3     | wood †             | 0.05 †    | 0.14 1                                 | 0.78 1          |
| wall (N, E, S) | 1-3   | concrete & glass 2 | 0.05 1    | 0.31 1 ‡                               | 0.877 1 ‡       |
| internal       | 1-3   | concrete †         | 0.035 2 4 | 0.5 1                                  | 1.0 1           |
| ground         | 1     | brick clay 3       | 0.1 †     | 0.65 5 6                               | 1.5 5 6         |
|                | 2     | concrete †         | 0.1 †     | 0.93 5 7                               | 1.5 5 7         |
|                | 3-4   | sand & gravel †    | 1.0/3.07  | 0.63 5 7                               | 1.2 5 7         |

<sup>1</sup> Galezzi, 2010; <sup>2</sup> Behar, 2011; <sup>3</sup> Hogenhout, 2010; <sup>4</sup> Georgitsi, 2011; <sup>5</sup> Ashrae, 2013 <sup>6</sup> Mörtstedt and Hellsten, 1992; <sup>7</sup> Offerle et al., 2005; <sup>†</sup> estimation / guess; <sup>‡</sup> theoretical







- OHM (Objective Hysteresis Model):
  - ✓ Contributions to  $\Delta Q_s$  from multiple surface material types.
  - ✓ EO-derived dQ\*/dt (e.g. Xu et al.,2008).

 $Q^*$  and  $dQ^*/dt$  measurements from EO

$$\Delta Q_S = \sum f_i a_{1,i} Q^* + f_i a_{2,i} \frac{dQ^*}{dt} + f_i a_{3,i}$$

Parameters specific to land cover class

(Grimmond anmd Oke 195



### **URBANFLUXES**

ARM (Aerodynamic Resistance Method)

$$Q_H = 
ho c_P rac{T_S - T_{air}}{r_a}$$
 Aerodynamic resistance















#### The vision:

- To advance the current knowledge of the impacts of Q<sub>F</sub> on UHI and hence on urban climate and energy consumption.
- To support the development of tools and strategies to mitigate these effects, improving thermal comfort and energy efficiency.
- To support the establishment of EO as a tool to help inform policy-making.
- To develop EO-based services.



URBANFLUXES is expected to generate a **novel EO-based method** for estimation of UEB, enabling its integration into **applications and operational services**; as for example:

- develop rules of thumb for density and green space ratio;
- distinguish between insulated and non-insulated buildings/ neighbourhoods;
- evaluate the implementation of climate change mitigation technologies such as solar-screening, green-belting and carbon-cooling.



### **Nature Based Solutions**

- Nature Based Solutions (NBS) are actions which are inspired by, supported by or copied from nature.
- Some involve using and enhancing existing natural solutions to challenges, while others are exploring more novel solutions, for example mimicking how non-human organisms and communities cope with environmental extremes.
- NBS are energy and resource-efficient, and resilient to change, but to be successful they must be adapted to local conditions.



- 40 M€ in the H2020 WP
   2016 2017 for NBS
   implementation.
- Need for robust monitoring systems.

















### **Nature Based Solutions**

- The **evaluation** of the large scale implementation of NBS should be based on their **sustainability potential**, therefore on their environmental and socioeconomic benefits.
- To assess **environmental impact**, urban planners need to quantitatively estimate the **modification caused by NBS implementation to the UEWC fluxes**.
- Concerning UEW fluxes, NBS deployment can have an impact on the ambient temperature.
- No one knows **how much this approach can cool a whole city**, since only a **few simulations** have evaluated specific technologies, such as green roofs, at that scale.











- The exploitation of EO for the evaluation of NBS implementation will lead to new services easily transferable to any city.
- Support the climate change mitigation planning at Municipality level.
- Support the **smart cities** concept towards building **resilience**.
- Support sustainable planning strategies to improve the quality of life in cities.
- RSLab in H2020: from **URBANFLUXES** to **ThinkNature**.



## Thank you!

### **Nektarios Chrysoulakis**

FORTH/IACM
N. Plastira 100, Vassilika Vouton,
70013, Heraklion
zedd2@iacm.forth.gr

http://rslab.gr



