Satellite data assimilation for NWP III Estimating the impact of new observations with Ensemble techniques

Sean Healy European Centre for Medium-range Weather Forecasts (ECMWF)

Special thanks to: Massimo Bonavita, Florian Harnisch ...

Review of previous lectures

- In general, NWP has moved away from using satellite retrievals/products, to assimilating "raw" observations.
- Stressed the importance of understanding the error characteristics and limitations of the observations.
 - This means knowing/understanding H, R.
- In NWP, we accept that all observations have errors, but we can still use them provided we have a reasonable estimate of the observation error statistics, R.
- Observations where the errors are not characterised by R must be screened out in the quality control (QC).

Aside: Quality control (QC) Qu. After L2

 Data assimilation systems usually include a QC step for satellite data of the form (say for a radiance or bending angle). REJECT IF:

$$|y - \mathbf{H}\mathbf{x}_{\mathbf{b}}| > \gamma(\sigma_{o} + \sigma_{b})$$

or
$$|y - \mathbf{H}\mathbf{x}_{\mathbf{b}}| > \gamma\sigma_{o}$$

where typically
 $\gamma \approx 5 - 8$

It is a good idea to monitor the data that is being removed by QC.

The ozone hole was originally missed because of a QC step.(Alan O'Neill)

And some data is blacklisted meaning it doesn't enter into the DA system even before QC checks.

Aim for this lecture

- The satellite component of the global observing system should evolve to reflect updated user requirements and the emergence of new measurement techniques and technologies. ONE OF YOU MAY PROPOSE A NEW MISSION. NWP assimilation may be one goal.
- But how can we estimate the impact or value of a new mission/observations to inform <u>GOS</u> decisions? What information will the new observations add to those already available?
- If we get a good forward model H, and a good estimate the observation error covariance matrix R, we can use variational and ensemble DA techniques to estimate the impact of the new observations.

Outline

- Estimating the "information content" using a 1D-Var approach. Valid for linear and ~weakly non-linear problems.
- Link this to Kalman Filter/4D-Var, and the need to approximate with ensemble techniques in NWP because of the size of the problem.
- The Ensemble of Data Assimilations (EDA).
- Assessing the impact of new data with the EDA. (not an OSSE)

CMWF

ESA Summer School 2014

Information content

If we assume a linear problem, recall the 1D-Var solution from lecture 1. We minimize a cost function:

$$J(\mathbf{x}) = (\mathbf{x} - \mathbf{x}_b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + (\mathbf{y}_{\mathrm{m}} - \mathbf{H}[\mathbf{x}])^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y}_{\mathrm{m}} - \mathbf{H}[\mathbf{x}])$$

The linear solution is:

$$\mathbf{x}_{a} = \mathbf{x}_{b} + \mathbf{B}\mathbf{H}^{T}(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R})^{-1}(\mathbf{y}_{m} - \mathbf{H}\mathbf{x}_{b})$$

And we obtain a *theoretical* estimate of the solution error covariance matrix:

$$\mathbf{S}_{\mathbf{a}} = \mathbf{B} - \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}\mathbf{H}\mathbf{B}$$

 Note that the solution error cov. does not depend on the observation values, only H and the covariance estimates.

Information content (2)

- If the assumed covariance matrices are reasonable, the solution error covariance matrix should be a reasonable approximation of the actual solution error <u>statistics</u>.
- We can use it to investigate the "information content" of the observation.
- "Information content": assume it is related to reduction of statistical uncertainty as result of making the observation. IE, how the error PDF changes.
- Uncertainty before making the observation: $\, {f B} \,$
- Uncertainty after: $S_a = B BH^T (HBH^T + R)^{-1} HB$

ECMWF

Information content

There are some more complex mathematical approaches to quantify the information content: Reduction in Shannon entropy; Degrees of Freedom of Signal.

$$S_e = -\frac{1}{2} \ln \left| \mathbf{S}_{\mathbf{a}} \mathbf{B}^{-1} \right| \qquad DFS = Tr \left(\mathbf{I} - \mathbf{S}_{\mathbf{a}} \mathbf{B}^{-1} \right)$$

- EG, see Rodgers: Inverse Methods for Atmospheric Sounding: Theory and Practice (page 36).
- Perhaps the easiest way is to compare the diagonal values of the covariance matrices ($\sqrt{S_a(i,i)}$ and $\sqrt{B(i,i)}$).
- This approach provides a good indication of where the observation will have the most influence

Example using GPS-RO and IASI: Do we

need both? What will GPS-RO add?

 Compared the information content of GPS-RO and IASI measurements in 1D-Var (2003).

Concluded measurements highly complementary. Suggested GPS-RO would provide the best temperature information in the 300-50 hPa interval.

Heights where GPS-RO is reducing the 24 hr forecast

errors in ECMWF system using an adjoint approach

Remark: Agrees with early 1D-Var information content studies.

Example 2: IASI channel selection

The infrared sounder IASI provides 8461 channels. This is too many for assimilation into the NWP model. In any case, 8461 channels <u>DOES NOT</u> mean 8461 pieces of information.

We can use 1D-Var information content techniques to chose a subset of ~300 channels.

The subset of channels is chosen to minimize the loss of information, with respect to using all the available channels.

Again we need **H**, **R** and **B** for this computation.

Can we generalise these 1D information content studies?

- Can we estimate the impact/information content of a set of new observations from a future mission, distributed in space/time, in the 4D-Var system?
- New ensemble techniques, developed by the data assimilation community, provide a framework for tackling this problem.

 Ensemble techniques have been developed to provide estimates flow dependent background error <u>statistics</u>, B.

Recap: Standard Kalman Filter

• The linear, unbiased analysis equation has the form:

$$\mathbf{x}^{a}_{k} = \mathbf{x}^{b}_{k} + \mathbf{K}_{k} (\mathbf{y}_{k} - \mathbf{H}_{k} (\mathbf{x}^{b}_{k}))$$

a = analysis; b = background k = time index (t=0,1,...,k,...)

 The best linear unbiased analysis (a.k.a. Best Linear Unbiased Estimator, BLUE) is achieved when the matrix K_k (Kalman Gain Matrix) has the form:

$$\mathbf{K}_{k} = \mathbf{P}_{k}^{b} \mathbf{H}_{k}^{T} (\mathbf{H}_{k}^{T} \mathbf{P}_{k}^{b} \mathbf{H}_{k}^{T} + \mathbf{R}_{k}^{-1})^{-1} = ((\mathbf{P}_{k}^{b})^{-1} + \mathbf{H}_{k}^{T} \mathbf{R}_{k}^{-1} \mathbf{H}_{k}^{b})^{-1} \mathbf{H}_{k}^{T} \mathbf{R}_{k}^{-1}$$

 \mathbf{P}^{b} = covariance matrix of the background error

R = covariance matrix of the observation error

Standard Kalman Filter

• What is the error covariance matrix associated with this background?

$$\mathbf{x}^{\mathsf{b}}_{\mathsf{k}} = \mathbf{M}_{\mathsf{t}_{\mathsf{k}-1} \to \mathsf{t}_{\mathsf{k}}}(\mathbf{x}^{\mathsf{a}}_{\mathsf{k}-1})$$

• Subtract the true state \mathbf{x}_{k}^{*} from both sides of the equation:

$$\boldsymbol{\varepsilon}^{b}_{k} = \mathbf{M}_{t_{k-1} \rightarrow t_{k}} (\mathbf{x}^{a}_{k-1}) - \mathbf{x}^{*}_{k}$$

• Since $\mathbf{x}_{k-1}^{a} = \mathbf{x}_{k-1}^{*} + \mathbf{\varepsilon}_{k-1}^{a}$ we have:

$$\boldsymbol{\varepsilon}^{b}_{k} = \mathbf{M}_{t_{k-1} \to t_{k}} (\mathbf{x}^{*}_{k-1} + \boldsymbol{\varepsilon}^{a}_{k-1}) - \mathbf{x}^{*}_{k} =$$
$$\mathbf{M}_{t_{k-1} \to t_{k}} (\mathbf{x}^{*}_{k-1}) + \mathbf{M}_{t_{k-1} \to t_{k}} \boldsymbol{\varepsilon}^{a}_{k-1} - \mathbf{x}^{*}_{k} =$$
$$\mathbf{M}_{t_{k-1} \to t_{k}} \boldsymbol{\varepsilon}^{a}_{k-1} + \eta_{k}$$

- Where we have defined the model error $\eta_k = \mathbf{M}_{t_{k-1} \rightarrow t_k} (\mathbf{x}_{k-1}^*) \mathbf{x}_k^*$
- We will also assume that $\langle \boldsymbol{\varepsilon}_{k-1}^{a} \rangle = \langle \eta_{k} \rangle = 0 = \langle \boldsymbol{\varepsilon}_{k}^{b} \rangle$
- The background error covariance matrix will then be given by:

Standard Kalman Filter

$$\boldsymbol{\langle \boldsymbol{\varepsilon}^{b}_{k} (\boldsymbol{\varepsilon}^{b}_{k})^{T} \rangle = \mathbf{P}^{b}_{k} = \boldsymbol{\langle (\mathbf{M}_{t_{k-1} \rightarrow t_{k}} \boldsymbol{\varepsilon}^{a}_{k-1} + \boldsymbol{\eta}_{k}) (\mathbf{M}_{t_{k-1} \rightarrow t_{k}} \boldsymbol{\varepsilon}^{a}_{k-1} + \boldsymbol{\eta}_{k})^{T} \rangle = } \\ \mathbf{M}_{t_{k-1} \rightarrow t_{k}} \boldsymbol{\langle \varepsilon^{a}_{k-1} (\boldsymbol{\varepsilon}^{a}_{k-1})^{T} \rangle (\mathbf{M}_{t_{k-1} \rightarrow t_{k}})^{T} + \boldsymbol{\langle \eta_{k} (\boldsymbol{\eta}_{k})^{T} \rangle = } \\ \mathbf{M}_{t_{k-1} \rightarrow t_{k}} \mathbf{P}^{a}_{k-1} (\mathbf{M}_{t_{k-1} \rightarrow t_{k}})^{T} + \mathbf{Q}_{k}$$

- Here we have assumed $\langle \boldsymbol{\varepsilon}_{k-1}^{a}(\boldsymbol{\eta}_{k})^{\mathsf{T}} \rangle = 0$ and defined the model error covariance matrix $\mathbf{Q}_{k} = \langle \boldsymbol{\eta}_{k}(\boldsymbol{\eta}_{k})^{\mathsf{T}} \rangle$
- We now have all the equations necessary to propagate and update the state and its error estimates:

The Kalman Filter

- The Kalman filter includes the covariance evolution, providing error <u>statistics</u> that vary in time and space.
- In principle, it provides all the information we need for an information content study.
- But the NWP matrices are too large for practical application. It can approximated with ensemble techniques (EnKF, ...).
- "Classic" 4D-Var: static background error covariance matrix, ignore model error ("strong constraint").
- But 4D-Var can be combined with an ensemble approach to estimate flow dependent error statistics.

The Ensemble of Data Assimilations

method (EDA)

•<u>We cycle 10 (or 20) 4D-Vars in parallel</u> using <u>perturbed observations</u> in each 4D-Var, plus a control experiment with no perturbations.

•The spread of the ensemble about the mean is related to the <u>theoretical estimate</u> <u>of the analysis and short-range forecast error statistics</u>.

Applications of the EDA: Ensemble prediction

Remark: EDA method

$$\mathbf{x}_{a}^{k} = \mathbf{x}_{b}^{k} + \mathbf{K}_{k} \left(\mathbf{y}^{k} - \mathbf{H}_{k} \mathbf{x}_{b}^{k} \right)$$
$$\mathbf{x}_{b}^{k+1} = \mathbf{M}_{k} \mathbf{x}_{a}^{k}$$
$$\mathbf{x}_{b}^{k+1} = \mathbf{M}_{k} \mathbf{x}_{a}^{k} + \zeta^{k}$$
$$\mathbf{y}^{k} - \mathbf{H}_{k} \mathbf{x}_{b}^{k} \right)$$
$$\mathbf{y} \sim \mathcal{N} \left(0, \mathbf{R} \right)$$
$$\zeta \sim \mathcal{N} \left(0, \mathbf{Q} \right)$$
$$\mathcal{K}_{a}^{k} = \mathbf{x}_{a}^{k} - \mathbf{x}_{a}^{k}$$
$$\mathbf{z}_{b}^{k+1} = \mathbf{x}_{b}^{k+1} - \mathbf{x}_{b}^{k+1}$$

 \rightarrow State estimate cancels out and to first order only the perturbations are important for the EDA spread.

 $\mathbf{P}_{k}^{b} = \mathbf{M}_{k} \overline{\varepsilon_{b}^{k+1} \left(\varepsilon_{b}^{k+1}\right)^{T}} = \mathbf{M}_{k} \overline{\varepsilon_{a}^{k} \left(\varepsilon_{a}^{k}\right)^{T}} \mathbf{M}_{k}^{T} + \mathbf{Q}_{k}$

The EDA method – EDA spread

- The spread of the ensemble about the mean provides an estimate of the error variance of the analysis and shortrange forecast – if the R matrices are realistic.
- spread s (variance) of N-member ensemble for EDA experiments:

for each time d

$$s_d = \sqrt{\sigma_d^2} = \sqrt{\frac{1}{N-1} \sum_{n=1}^N (x^n - \overline{x})^2}$$

for a period D (Expectation)

$$s = \sqrt{\mathbb{E}\left[\sigma_d^2\right]} = \sqrt{\frac{1}{D}\sum_{d=1}^D \left(\frac{1}{N-1}\sum_{n=1}^N \left(x^n - \overline{x}\right)^2\right)}$$

Applications of the EDA (M. Bonavita)

- We want to use EDA perturbations to simulate 4DVar flowdependent background error covariance evolution
- We start with the EDA flow-dependent estimates of background error variances (EDA based background error variance Hurricane Fanele, 20 January 2009

Use of EDA covariances in 4DVar

20 member EDA

Surf. Press. Background Err. **St.Dev.** Surf. Press. BG Err. **Correlation** L.

Tuesday 20 January 2009 00UTC ECMWF Forecast t+9 VT: Tuesday 20 January 2009 09UTC Surface: Mean sea level pressure

ECMWF

The EDA method

The EDA spread

- estimates the analysis (forecast) <u>uncertainty</u>, which is related to the <u>error statistics</u> and not the error itself.
- depends on the <u>assumed input error statistics</u> and not the actual ones (→ R, B, Q)
- provides realistic estimate of uncertainty if, and only if, the assumed input error statistics are realistic.
- For a non-specialist "<u>Errors of the day</u>" is a confusing term. "Error statistics of the day" is more appropriate.

 $\mathbf{P}_{k}^{a} = \mathbf{P}_{k+1}^{b}$

EDA and **4D**-Var information content

- We can trick the EDA system into thinking we have a new set of observations, even if they contain no new information about the real atmospheric state.
- We simulate a new observation set, using the new H and R.
- We then assimilate these simulated data into the EDA system, to see how the spread changes.
- This was initially used the estimate the impact of the Doppler Wind Lidar (DWL) shown lecture 2.

ADM-Aeolus: Simulated impact (Tan et al.)

Expected forecast impact for ADM-Aeolus has been simulated using ensemble methods.

Simulated DWL data adds value at all altitudes and well into longer-range forecasts.

Example: GNSS radio occultation concept

- Aim to investigate ensemble spread as a function of GNSS-RO number.
- Identify, if and when the impact begins to "saturate".

Setup of GNSS-RO experiments

- EDA experiments assimilate:
 - all operationally used GOS (apart from GNSS-RO data)

- plus		simulated	real	GNSS-RO profiles per day
	EDA_ctrl	-	-	-
	EDA_real	-	$\sim \overline{2500}$	
	EDA_2	2000	-	
	EDA_4	4000	-	
	EDA_8	8000	-	
	EDA_16	16000	-	
	EDA_32	32000	-	
	EDA_64	64000	-	
	EDA_128	128000	-	

 \rightarrow Total of nine EDA experiment that only differ in the number of assimilated GNSS RO data. 6 week period July-August 2008.

Simulation of GNSS-RO data

Time series of EDA analysis spread

Vertical profiles of EDA spread T(K)

- Temperature uncertainty for the analysis
 → reduced with additional GNSS-RO profiles
- Very good agreement between EDA_real and EDA_2

Cross section of observation impact

$\frac{\text{EDA}_n - \text{EDA}_\text{ctrl}}{\text{EDA}_\text{ctrl}}$

ECMWF

- Maximum impact on upper-tropospheric / middlestratospheric temperatures
- Again, very good agreement between real and simulated GNSS RO data in the EDA system.
- Similar pattern for geopotential height

Scaling of GNSS RO impact - EDA

- Large improvements up to 16000 profiles per day
- Even with 32000 128000 profiles still improvements possible

 \rightarrow no evidence of saturated impact up to 128000 profiles.

EDA mean / control vs. EDA spread

geopotential height at 500 hPa EDA_128 EDA 64 EDA 16 EDA_32 EDA 8 geopotenial (m) 52 03 EDA 4 EDA 2 N.Hem. Tropics S.Hem. EDA_128 EDA_64 EDA_32 EDA_16 EDA_09 EDA_04 geopotenial (m) - R EDA_02 3.5 EDA real EDA_ctrl 2.5 N.Hem. Tropics S.Hem. forecast lead time (h) forecast lead time (h) forecast lead time (h)

 \rightarrow EDA mean / ctrl FC error not reduced, while EDA spread is reduced

Limitations: Scaling of GNSS RO impact

- EDA

 Mis-specification of the input error covariance matrices can introduce additional uncertainty. We can see this in toy models.

 \rightarrow incorrect specification of observation errors can lead to larger analysis std.devs as more observations are added.

Summary

- New observations are most valuable if the provide us with new information.
- Information content studies are useful for estimating the impact of new observation types.
- The new ensemble data assimilation techniques provide a framework for estimating the impact of new missions on the 3D analysis.
 - The ensemble (EnkF, EDA) provide information about the error statistics NOT the errors
- Important tool for planning the future Global Observing System.

Summary for 3 lectures

- Covered a lot of ground. More detail at:
 - http://old.ecmwf.int/newsevents/training/meteorological_presentations/2013/SAF2013/index.html
- Satellite data are now very important in NWP, but this was not always the case (problems in 1980's).
- Key point: The difference between the measurement and the retrieval product, and the need for a priori data/constraints.

Summary

- Always question what the "satellite temperature (or humidity or wind) measurement …" actually is, because the original problem was probably ill-posed.
- Variational assimilation/retrievals techniques can look daunting, but they are just a least-squares approach, written in matrix/vector form.
 - WE COULD WRITE FITTING y = (ax+ b) TO DATA LOOK LIKE THE 4D-VAR COST FUNCTION IF WE WANTED.
- If you have a good understanding of the forward problem, H (y=Hx), and the observation error statistics, R, you are more likely to interpret the data, y, correctly.

