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Review of previous lectures 

 In general, NWP has moved away from using satellite 

retrievals/products, to assimilating “raw” observations. 

 

 Stressed the importance of understanding the error 

characteristics and limitations of the observations. 
 

- This means knowing/understanding H, R.  

 

 In NWP, we accept that all observations have errors, but 

we can still use them provided we have a reasonable 

estimate of the observation error statistics, R.   

 

 Observations where the errors are not characterised by 

R must be screened out in the quality control (QC). 
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Aside: Quality control (QC) Qu. After L2 

 Data assimilation systems usually include a QC step for 

satellite data of the form (say for a radiance or bending 

angle). REJECT IF: 

 

 

 

 

 

 

 

 

 And some data is blacklisted meaning it doesn’t enter 

into the DA system even before QC checks. 
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originally missed 
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step.(Alan O’Neill) 
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Aim for this lecture 

 The satellite component of the global observing system 

should evolve to reflect updated user requirements and 

the emergence of new measurement techniques and 

technologies. ONE OF YOU MAY PROPOSE A NEW 

MISSION. NWP assimilation may be one goal.  

 

 But how can we estimate the impact or value of a new 

mission/observations to inform GOS decisions? What 

information will the new observations add to those 

already available? 

 

 If we get a good forward model H, and a good estimate 

the observation error covariance matrix R, we can use 

variational and ensemble DA techniques to estimate the 

impact of the new observations. 

 ESA Summer School 2014 
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Outline 

 Estimating the “information content” using a 1D-Var 

approach. Valid for linear and ~weakly non-linear 

problems. 

 

 Link this to Kalman Filter/4D-Var, and the need to 

approximate with ensemble techniques in NWP because 

of the size of the problem. 

 

 The Ensemble of Data Assimilations (EDA). 

 

 Assessing the impact of new data with the EDA. (not an 

OSSE) 

 

 Summary. 

 ESA Summer School 2014 
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Information content 

 If we assume a linear problem, recall the 1D-Var solution 

from lecture 1.  We minimize a cost function: 

 

 

  The linear solution is: 

 

 

 

 And we obtain a theoretical estimate of the solution error 

covariance matrix: 

 

 

 Note that the solution error cov. does not depend on the 

observation values, only H and the covariance estimates. 
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Information content (2) 

 If the assumed covariance matrices are reasonable, the 

solution error covariance matrix should be a reasonable 

approximation of the actual solution error statistics.  

 

 We can use it to investigate the “information content” of 

the observation.  

 

 “Information content”: assume it is related to reduction 

of statistical uncertainty as result of making the 

observation. IE, how the error PDF changes. 

 

 Uncertainty before making the observation: 

 

 Uncertainty after:   
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Information content 
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Example using GPS-RO and IASI: Do we 

need both? What will GPS-RO add?  

 Compared the information content of GPS-RO and IASI 

measurements in 1D-Var (2003).  

 

 

 

 

 

 

 

 

 

 Concluded measurements highly complementary. 

Suggested GPS-RO would provide the best temperature 

information in the 300-50 hPa interval. 
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 Heights where GPS-RO is reducing the 24 hr forecast 

errors in ECMWF system using an adjoint approach 
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Example 2: IASI channel selection 

ESA Summer School 2014 

The infrared sounder IASI provides 8461 channels. This is too many for 

assimilation into the NWP model. In any case, 8461 channels DOES NOT 

mean 8461 pieces of information.   

 

We can use 1D-Var information content techniques to chose a subset of 

~300 channels.  

The subset of channels is 

chosen to minimize the loss of 

information, with respect to 

using all the available 

channels.  

 

Again we need H, R and B for 

this computation. 

 

All 

subset 

background 
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Can we generalise these 1D information 

content studies? 

 Can we estimate the impact/information content of a set 

of new observations from a future mission, distributed in 

space/time, in the 4D-Var system? 

 

 New ensemble techniques, developed by the data 

assimilation community, provide a framework for 

tackling this problem.  

 

 

 Ensemble techniques have been developed to  provide 

estimates flow dependent background error statistics, B.    

 

ESA Summer School 2014 
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• The linear, unbiased analysis equation has the form: 

xa
k = xb

k + Kk (yk- Hk(x
b

k))  

a = analysis;   b = background 
k = time index (t=0,1,…,k,…) 

• The best linear unbiased analysis (a.k.a. Best Linear Unbiased 
Estimator, BLUE) is achieved when the matrix Kk (Kalman Gain Matrix) 
has the form: 

Kk = Pb
k H

T
k(Hk P

b
k H

T
k + Rk)

-1 = ((Pb
k)

-1 +  HT
k Rk

-1 Hk )
-1 HT

k Rk
-1 

Pb = covariance matrix of the background error 
R = covariance matrix of the observation error 

  

    

Recap: Standard Kalman Filter 

k k+1 
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• What is the error covariance matrix associated with this background? 

xb
k = Mtk-1→tk

(xa
k-1) 

• Subtract the true state x*
k  from both sides of the equation:  

εb
k = Mtk-1→tk

(xa
k-1) - x*

k 

• Since xa
k-1 = x*

k-1 + εa
k-1 we have: 

εb
k = Mtk-1→tk

(x*
k-1 + εa

k-1) - x*
k  =  

Mtk-1→tk
(x*

k-1) + Mtk-1→tk
εa

k-1 - x*
k  = 

Mtk-1→tk
εa

k-1 + ηk 

• Where we have defined the model error ηk = Mtk-1→tk
(x*

k-1) - x*
k 

• We will also assume that < εa
k-1 > = < ηk> = 0  => < εb

k >   

• The background error covariance matrix will then be given by:   

  

    

Standard Kalman Filter 
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<εb
k (ε

b
k)

T> = Pb
k = <(Mtk-1→tk

εa
k-1 + ηk) (Mtk-1→tk

εa
k-1 + ηk)

T> = 

Mtk-1→tk
<εa

k-1 (εa
k-1)T> (Mtk-1→tk

)T
 
+ <ηk (ηk)

T> = 

Mtk-1→tk 
Pa

k-1 (Mtk-1→tk
)T

 
+ Qk 

• Here we have assumed < εa
k-1 (ηk )

T> = 0  and defined the model error 
covariance matrix Qk = <ηk (ηk)

T> 

• We now have all the equations necessary to propagate and update 
the state and its error estimates: 

  xb
k = Mtk-1→tk

(xa
k-1) 

Pb
k = Mtk-1→tk 

Pa
k-1 (Mtk-1→tk

)T
 
+ Qk 

xa
k = xb

k + Kk (y k- Hk(x
b

k)) 

Pa
k = (I – KkHk)P

b
k (I – KkHk)

T + KkRkKk
T 

Kk = Pb
k H

T
k(Hk P

b
k H

T
k + Rk)

-1 

 

 

  

    

Standard Kalman Filter 
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The Kalman Filter 

 The Kalman filter includes the covariance evolution, 

providing error statistics that vary in time and space.  

 

 In principle, it provides all the information we need for an 

information content study. 

 

 But the NWP matrices are too large for practical 

application. It can approximated with ensemble 

techniques (EnKF, …).  

 

  “Classic” 4D-Var: static background error covariance 

matrix, ignore model error (“strong constraint”). 

 

 But 4D-Var can be combined with an ensemble approach 

to estimate flow dependent error statistics.  

ESA Summer School 2014 
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The Ensemble of Data Assimilations 

method (EDA) 

xn
a (tk)   Xn

b (tk+1)   
 

Analysis 

system 

 

 

Forecast 

 

xn
b (tk)   

n = number of ensemble 

xa + εn
a   xf + εn

f   

ζnm  (SPPT) 
ζnm  (SPPT) 

y (tk) + εn
o   

boundary pert. n 

 

•We cycle 10 (or 20)  4D-Vars in parallel using perturbed observations in each 4D-

Var, plus a control experiment with no perturbations.    

 

 

•The spread of the ensemble about the mean is related to the theoretical estimate 

of the analysis and short-range forecast error statistics.  
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Applications of the EDA: Ensemble prediction 

system 
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Remark: EDA method 

→ State estimate cancels out and     

to first order only the perturbations 

are important for the EDA spread. 
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 The spread of the ensemble about the mean provides an 

estimate of the error variance of the analysis and short-

range forecast – if the R matrices are realistic .  

 

 spread s (variance) of N-member ensemble for EDA 

experiments:        

    for each time d    

 

    

 for a period D (Expectation) 

 

 

 

The EDA method – EDA spread 
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• We want to use EDA perturbations to simulate 4DVar flow-

dependent background error covariance evolution 

• We start with the EDA flow-dependent estimates of 

background error variances (diagonal of the B matrix, Σb) 
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Applications of the EDA (M. Bonavita) 

EDA based background error variance 
for surface pressure 
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20 member EDA 

Surf. Press. Background Err. St.Dev.      Surf. Press. BG Err. Correlation L.     
 

 

 

 

 

 

 

 

Use of EDA covariances in 4DVar 
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The EDA method 

The EDA spread  

 

 estimates the analysis (forecast) uncertainty, which is 

related to the error statistics and not the error itself. 

 

 depends on the assumed input error statistics and not 

the actual ones (→ R, B, Q) 

 

 provides realistic estimate of uncertainty if, and only if, 

the assumed input error statistics are realistic. 

 

 For a non-specialist “Errors of the day” is a confusing 

term. “Error statistics of the day” is more appropriate. 

 

& 
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EDA and 4D-Var information content 

 We can trick the EDA system into thinking we have a new 

set of observations, even if they contain no new 

information about the real atmospheric state. 

 

 We simulate a new observation set, using the new H and 

R. 

 

 We then assimilate these simulated data into the EDA 

system, to see how the spread changes.  

 

 This was initially used the estimate the impact of the 

Doppler Wind Lidar (DWL) shown lecture 2.   
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ADM-Aeolus: Simulated impact (Tan et al.) 

S.Hem
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Zonal wind forecast error (m/s) 
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Control 

 

 

   

                      Control-sondes 

Expected forecast impact for ADM-

Aeolus has been simulated using 

ensemble methods. 

 
Simulated DWL data adds value at all 
altitudes and well into longer-range 
forecasts. 

6-hour data coverage: 

1000 

100 

500 

0.0 0.5 1.0 1.5 
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Example: GNSS radio occultation 

concept 

Occulting GNSS 

satellite 
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Example: EDA based GNSS-RO impact  

 

 Aim to investigate ensemble spread as a function of 

GNSS-RO number. 

 

 Identify, if and when the impact begins to “saturate”. 

Assimilation window 

Analysis Forecast Time 

v
a
ri
a
b
le

 

Number of GNSS RO profiles 

“Saturation” 

E
D

A
 s

p
re

a
d
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Setup of GNSS-RO experiments 

• EDA experiments assimilate:   

    - all operationally used GOS (apart from GNSS-RO data)  

    - plus                   | simulated |  real     | GNSS-RO profiles per day 

 

 

 

 

 

 

 

 

→ Total of nine EDA experiment that only differ in the number of 

assimilated GNSS RO data. 6 week period July-August 2008. 

 



Slide 30 

Simulation of GNSS-RO data 

T799, L91 

We use a 1D operator to 

assimilate this data. 

On 247 levels and looks like 

GRAS data 
Adjusted to get 

reasonable  (o-b)s 
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Time series of EDA analysis spread 

T(100hPa) 
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 Vertical profiles of EDA spread T(K) 

• Temperature uncertainty for the analysis 

 → reduced with additional GNSS-RO profiles 

• Very good agreement between EDA_real and EDA_2 

EDA analysis spread for temperature (K) 
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 Cross section of observation impact 

 Maximum impact on upper-tropospheric / middle-

stratospheric temperatures 

 Again, very good agreement between real and simulated 

GNSS RO data in the EDA system. 

 Similar pattern for geopotential height 

-50      -20     -12.5    -7.5      -5      -2.5      [%]     2.5        5        7.5    12.5      20       50 

Temperature analysis 

EDA_real EDA_2 
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Scaling of GNSS RO impact - EDA 

Analysis of temperature at 100 hPa 

• Large improvements up to 16000 profiles per day 

• Even with 32000 – 128000 profiles still improvements possible 

 → no evidence of saturated impact up to 128000 profiles.  

today 

~ 25 million 

bending 

 angles  

per day 

~ 50 % of the impact  

of 128 000 profiles  
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EDA mean / control  vs. EDA spread 

geopotential height at 500 hPa 

control 

spread 

mean 

→ EDA mean / ctrl FC error not reduced, while EDA spread is reduced  
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Limitations: Scaling of GNSS RO impact 

- EDA 

• Mis-specification of the input error covariance matrices 

can introduce additional uncertainty. We can see this in 

toy models.  

 → incorrect specification of observation errors can lead 

to larger analysis std.devs as more observations are added. 

 

Healy and White, 2005 
actual uncertainty with 

mis-specified  

 

         correct 

observation error 

covariance matrix 

estimated uncertainty with  

mis-specified observation  

error covariance matrix  
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Summary 

 New observations are most valuable if the provide us 

with new information.  

  

 Information content studies are useful for estimating the 

impact of new observation types.  

 

 The new ensemble data assimilation techniques provide 

a framework for estimating the impact of new missions 

on the 3D analysis.  
 

- The ensemble (EnkF, EDA) provide information about the error 

statistics NOT the errors 

 

 Important tool for planning the future Global Observing 

System.  
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Summary for 3 lectures 

 Covered a lot of ground. More detail at: 

 
- http://old.ecmwf.int/newsevents/training/meteorological_presentations/2013/SAF2013/index.html 

 

 Satellite data are now very important in NWP, but this 

was not always the case (problems in 1980’s).  

 

  Key point: The difference between the measurement and 

the retrieval product, and the need for a priori 

data/constraints.  

ESA Summer School 2014 
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Summary 

 Always question what the “satellite temperature (or 

humidity or wind) measurement …” actually is, because 

the original problem was probably ill-posed. 

 

  Variational assimilation/retrievals techniques can look 

daunting, but they are just a least-squares approach, 

written in matrix/vector form.  

 
- WE COULD WRITE FITTING  y = (ax+ b) TO DATA LOOK LIKE THE 

4D-VAR COST FUNCTION IF WE WANTED.  

 

 If you have a good understanding of the forward 

problem, H (y=Hx), and the observation error statistics, 

R, you are more likely to interpret the data, y, correctly. 

ESA Summer School 2014 


