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Review of previous lectures

® In general, NWP has moved away from using satellite
retrievals/products, to assimilating “raw” observations.

® Stressed the importance of understanding the error
characteristics and limitations of the observations.

- This means knowing/understanding H, R.

® In NWP, we accept that all observations have errors, but
we can still use them provided we have a reasonable
estimate of the observation error statistics, R.

® Observations where the errors are not characterised by
R must be screened out in the quality control (QC).
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Aside: Quality control (QC) Qu. After L2

® Data assimilation systems usually include a QC step for
satellite data of the form (say for a radiance or bending
angle). REJECT IF:

— Hx ‘> (G -I-G) It is a good idea to
‘y b AP b monitor the data that

or is being removed by
QC.

‘ — Hx ‘ > VO

Y b 7o The ozone hole was

where typ ically originally missed
because of a QC

y~5-8 step.(Alan O’Neill)

® And some data is blacklisted meaning it doesn’t enter
into the DA system even before QC checks.
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Aim for this lecture

® The satellite component of the global observing system
should evolve to reflect updated user requirements and
the emergence of new measurement techniques and
technologies. ONE OF YOU MAY PROPOSE A NEW
MISSION. NWP assimilation may be one goal.

® But how can we estimate the impact or value of a new
mission/observations to inform GOS decisions? What
information will the new observations add to those
already available?

® If we get a good forward model H, and a good estimate
the observation error covariance matrix R, we can use
variational and ensemble DA techniques to estimate the
impact of the new observations.
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Outline

® Estimating the “information content” using a 1D-Var
approach. Valid for linear and ~weakly non-linear
problems.

® Link this to Kalman Filter/4D-Var, and the need to
approximate with ensemble techniques in NWP because
of the size of the problem.

® The Ensemble of Data Assimilations (EDA).

® Assessing the impact of new data with the EDA. (not an
OSSE)

® Summary.
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Information content

® If we assume a linear problem, recall the 1D-Var solution
from lecture 1. We minimize a cost function:

J(x)=(x—xv) B (x—x) +(y,, — H[x])' R"(y,, —H[x])

® The linear solution is:

x, =x, + BH'(HBH" +R)'(y, — Hx,)

® And we obtain a theoretical estimate of the solution error
covariance matrix:

S =B-BH'(HBH' +R)"'HB

® Note that the solution error cov. does not depend on the
observation values, only H and the covariance estimates.
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Information content (2)

® If the assumed covariance matrices are reasonable, the
solution error covariance matrix should be a reasonable
approximation of the actual solution error statistics.

® We can use it to investigate the “information content” of
the observation.

® “Information content”: assume it is related to reduction
of statistical uncertainty as result of making the
observation. IE, how the error PDF changes.

® Uncertainty before making the observation: B

® Uncertainty after: S, =B—BH'(HBH' +R) 'HB



Information content

® There are some more complex mathematical approaches
to quantify the information content: Reduction in
Shannon entropy; Degrees of Freedom of Signal.

S, =-1/InS,B" DFS=Tr(1-S,B™)

- EG, see Rodgers: Inverse Methods for Atmospheric Sounding:
Theory and Practice (page 36).

® Perhaps the easiest way is to compare the diagonal

values of the covariance matrices (,/S,(i,i) and /B(i, i)).

® This approach provides a good indication of where the
observation will have the most influence

A CECMWF



Example using GPS-RO and 1ASI: Do we

need both? What will GPS-RO add?
® Compared the information content of GPS-RO and IASI

measurements in 1D-Var (2003).
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® Concluded measurements highly complementary.
Suggested GPS-RO would provide the best temperature

information in the 300-50 hPa interval.
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Heights where GPS-RO is reducing the 24 hr forecast

errors in ECMWF system using an adjoint approach
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Remark: Agrees with early 1D-Var information content studies.
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Pressure (hPa)

Example 2: I1ASI channel selection

The infrared sounder IASI provides 8461 channels. This is too many for
assimilation into the NWP model. In any case, 8461 channels DOES NOT

mean 8461 pieces of information.

We can use 1D-Var information content techniques to chose a subset of

~300 channels.
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The subset of channels is
chosen to minimize the loss of
information, with respect to
using all the available
channels.

Again we need H, R and B for
this computation.
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Can we generalise these 1D information

content studies?

® Can we estimate the impact/information content of a set
of new observations from a future mission, distributed in
space/time, in the 4D-Var system?

® New ensemble techniques, developed by the data
assimilation community, provide a framework for
tackling this problem.

® Ensemble techniques have been developed to provide
estimates flow dependent background error statistics, B.
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Recap: Standard Kalman Filter

Time
Obzarvations Obsarvations Obsarvations
: F = Far = Far
K k+

Medium-range forecast

® The linear, unbiased analysis equation has the form:
X2 = X0 + Ky (v~ H(x))

a = analysis; b =background
k = time index (t=0,1,...,k,...)

* The best linear unbiased analysis (a.k.a. Best Linear Unbiased

Estimator, BLUE) is achieved when the matrix K, (Kalman Gain Matrix)
has the form:

PP = covariance matrix of the background error
R = covariance matrix of the observation error
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Standard Kalman Filter

*  What s the error covariance matrix associated with this background?
xbk = Mtk_1—>tk(xak-1)
* Subtract the true state x*, from both sides of the equation:
ebk = Mtk_1—>tk(xak-1) } X*k
* Since x®_, =X, ,+ €, we have:

b — * a * =
=M (Xt €)X =

k a * —
Mtk_1—>tk(x k-l) + Mtk_1—>tk£ k-1~ X k —
d
t 1t E k1 T 1k
. * *
*  Where we have defined the model error n, = Mtk-l_’tk(x 1) - X i

*  We will also assume that <&, ,>=<n>=0 =><¢gb >

* The background error covariance matrix will then be given by:
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Standard Kalman Filter

<€’ (°)>=Po=<(M, &1+ n) (M &1 +n)™>=
<€, (e8.4)"> (Mtk_1—>tk)T +<n (n)™> =
Mtk_1—>tk Pak-l (Mtk_1—>tk)T + Qk

* Here we have assumed < €, ; (n,)™> =0 and defined the model error
covariance matrix Q, =<n, (n,)™

*  We now have all the equations necessary to propagate and update
the state and its error estimates:
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The Kalman Filter

® The Kalman filter includes the covariance evolution,
providing error statistics that vary in time and space.

® In principle, it provides all the information we need for an
information content study.

® But the NWP matrices are too large for practical
application. It can approximated with ensemble
techniques (EnKF, ...).

® “Classic” 4D-Var: static background error covariance
matrix, ignore model error (“strong constraint”).

® But 4D-Var can be combined with an ensemble approach
to estimate flow dependent error statistics.
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The Ensemble of Data Assimilations
method (EDA)

m (SPPT
c"i (SPPT) Zom (SPPT)
Xp? (t) = = = => X2 (i) ﬁl{ Xp® (te1)
1T > 1T >
y(td*+e.2 _ _ s <
boundary pert. n | X +&;? X+ g,f

*We cycle 10 (or 20) 4D-Vars in parallel using perturbed observations in each 4D-
Var, plus a control experiment with no perturbations.

*The spread of the ensemble about the mean is related to the theoretical estimate
of the analysis and short-range forecast error statistics.
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Applications of the EDA: Ensemble prediction
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Remark: EDA method

xf, — xiﬁ, + K, (y';" -~ H;;Xff,)

=% + K, (y" +nt— Hkif;,)

| | k] ax ok | sk

Xi}-l'] _ Bfig-xf} X, = Man + C
__________________________________ k _ ~ k k k+] . ‘fJC-l—l Jc—l—l
e =xf —x¢ e =% —x;
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k+1 (k1T TanT
P! e, (e,7) = Mgk (eb) M +Qx

— State estimate cancels out and
to first order only the perturbations
are important for the EDA spread.

n~N(0,R)
(~N(0,Q)
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The EDA method - EDA spread

® The spread of the ensemble about the mean provides an
estimate of the error variance of the analysis and short-
range forecast — if the R matrices are realistic .

® spread s (variance) of N-member ensemble for EDA
experiments:
for each time d

TI,EIT

— 1 < .
S = \/Jj = J I.\*I-" ~ 1 Z (.T:ﬂ _ '_r)l

n=1

for a period D (Expectation)

Lo~ 1 ¢ F
s=1/E[o2] = DZ(X_IZ(:}?TL_:}:)A)

=1 n=1
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Applications of the EDA (M. Bonavita)

e We want to use EDA perturbations to simulate 4DVar flow-
dependent background error covariance evolution

e We start with the EDA flow-dependent estimates of

background error variances ( EDA based background error variance
Hurricane Fanele, 20 January 2009 1O s_urface pressure
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Use of EDA covariances in 4DVar

20 member EDA
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The EDA method

The EDA spread

® estimates the analysis (forecast) uncertainty, which is

- _— e
—_- -

(\\ PE Pff:r—l—l ,:'
® depends on the assumed input error statistics and not -
the actual ones (— R, B, Q)

® provides realistic estimate of uncertainty if, and only if,
the assumed input error statistics are realistic.

® For a non-specialist “Errors of the day” is a confusing
term. “Error statistics of the day” is more appropriate.
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EDA and 4D-Var information content
® We can trick the EDA system into thinking we have a new
set of observations, even if they contain no new

information about the real atmospheric state.

® We simulate a new observation set, using the new H and
R.

® We then assimilate these simulated data into the EDA
system, to see how the spread changes.

® This was initially used the estimate the impact of the
Doppler Wind Lidar (DWL) shown lecture 2.
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ADM-Aeolus: Simulated impact (tanetal,)

6-hour data coverage:
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Simulated DWL data adds value at all Zonal wind forecast error (m/s)
altitudes and well into longer-range
forecasts.

for 12-hour forecast.
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Example: GNSS radio occultation

concept

Time Delay & Bend Angle
Provide Density vs. Altitude

Occulting LEO

Satellite

IONOSPHERE




Example: EDA based GNSS-RO impact

Assimilation window “Saturation”
A, A 1 A < I
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Analysis Forecast Time Number of GNSS RO profiles

® Aim to investigate ensemble spread as a function of
GNSS-RO number.

® |dentify, if and when the impact begins to “saturate”.
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 EDA experiments assimilate:

Setup of GNSS-RO experiments

- all operationally used GOS (apart from GNSS-RO data)

| GNSS-RO profiles per day

- plus simulated | real
EDA _ctrl - -
EDA _real - ~ 2500
EDA 2 2000 -
EDA 4 4000 -
EDA_8 8000 -
EDA_16 16000 -
EDA_32 32000 -
EDA_64 64000 -
EDA_128 128000 -

— Total of nine EDA experiment that only differ in the number of
assimilated GNSS RO data. 6 week period July-August 2008.
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Simulation of GNSS-RO data

Operational ECMWF analysis
— proxy for the “truth”

simulated GNSS-RO
bending angle
profiles

randomly distributed
observation time and location
interpolate 4 g
i)
>
g 0%
Fs]
45"
60 P
B P
-180-160-140-120-100 -80 -60 -40 .E}Dmg?nﬂin 40 &0 80 100 120 140 160 180
realistic 2D
observation €<——  bending angle
errors operator

On 247 levels and looks like
GRAS data

Adjusteéto get
reasonable (o-b)s

We use a 1D operator to
assimilate this data.
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Time series of EDA analysis spread

temperature (K)
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Vertical profiles of EDA spread T(K)

Temperature uncertainty for the analysis
— reduced with additional GNSS-RO profiles
* Very good agreement between EDA real and EDA 2
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EDA _n — EDA _ctrl
EDA _ctrl

Cross section of observation impact

® Maximum impact on upper-tropospheric / middle-
stratospheric temperatures

® Again, very good agreement between real and simulated
GNSS RO data in the EDA system.

® Similar iattern for ieoiotential heiiht P



Scaling of GNSS RO impact - EDA

EDA_n — EDA ctrl 00 B et et 1 e —e—N.Hem L
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Large improvements up to 16000 profiles per day

Even with 32000 — 128000 profiles still improvements possible

— no evidence of saturated impact up to 128000 profiles.
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EDA mean / control vs. EDA spread

geopotential height at 500 hPa
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Limitations: Scaling of GNSS RO impact
- EDA

- Mis-specification of the input error covariance matrices
can introduce additional uncertainty. We can see this in
toy models.

— incorrect specification of observation errors can lead
to larger analysis std.devs as more observations are added.

Healy and White, 2005 actual uncertainty with

mis-specified .
} observation error

covariance matrix

correct

estimated uncertainty with
mis-specified observation
error covariance matrix

16000

[ {
- LW ..-'..I-\...
Number of measurements
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Summary

® New observations are most valuable if the provide us
with new information.

® Information content studies are useful for estimating the
impact of new observation types.

® The new ensemble data assimilation techniques provide
a framework for estimating the impact of new missions
on the 3D analysis.

- The ensemble (EnkF, EDA) provide information about the error
statistics NOT the errors

® Important tool for planning the future Global Observing
System.
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Summary for 3 lectures

® Covered a lot of ground. More detail at:

- http://lold.ecmwf.int/newsevents/training/meteorological_presentations/2013/SAF2013/index.html

® Satellite data are now very important in NWP, but this
was not always the case (problems in 1980’s).

® Key point: The difference between the measurement and
the retrieval product, and the need for a priori
data/constraints.

/Xa — (I o KH)xb + KYm
retrieval prgr \measurement
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Summary

® Always question what the “satellite temperature (or
humidity or wind) measurement ...” actually is, because
the original problem was probably ill-posed.

® Variational assimilation/retrievals techniques can look
daunting, but they are just a least-squares approach,
written in matrix/vector form.

- WE COULD WRITE FITTING y = (ax+ b) TO DATA LOOK LIKE THE
4D-VAR COST FUNCTION IF WE WANTED.

® If you have a good understanding of the forward
problem, H (y=Hx), and the observation error statistics,
R, you are more likely to interpret the data, y, correctly.
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