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Role of lakes In climate and weather

Understanding lake
processes and interactions
with climate is essential for
climate modelling, weather
forecasting

— |ce free season affects
evaporation in the
summer/fall
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Brown and Duguay, 2010



Role of lakes In climate and weather

The presence (or absence) of ice cover
on lakes in winter has effect on the
surrounding climate

March 16, 2009 — Lake Superior

— Surrounding land can freeze before lakes,
results in lake becoming heat source

— Lakes that freeze over completely essentially
put a ‘lid’ on turbulent fluxes

— Lakes that do not freeze completely continue
to interact with atmosphere throughout winter
(e.g. Laurentian Great Lakes)
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Role of lakes In climate and weather

Thermal moderation effect of lakes
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Role of lakes In climate and weather

Thermal moderation effect of lakes

Differences in simulated air temperature (° C) 2 m from RCA model over
northern Europe with lakes (coupled with FLake lake model) and without
lakes (open land) for winter (left) and spring (right) 1961-1990.

Source: P. Samuelsson



Role of lakes In climate and weather

Thermal moderation effect of lakes

Improper
representation of
lake ice can lead
to substantial
errors in weather
and climate
models (e.qg. air
temperature, lake
effect snowfall).

Mean winter temperature difference (°C)
(with ice — no ice)

Source: Winger and Brown, pers. comm., 2008



Role of lakes In climate and weather

Lake effect snowfall in Great Lakes region

o

.




Role of lakes In climate and weather

Lake effect snowfall in Great Lakes region




Role of lakes In climate and weather

Lake effect snowfall in Great Lakes region

“8 Days, 10 Feet and the Snow Isn’'t Done Yet”

Workers tackling snowbanks around homes in
Mexico, a community in Oswego County, N.Y.
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Role of lakes In climate and weather

Lake effect snowfall in Great Lakes region
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Response of lakes to climate

The timing of lake ice phenological events (e.g. freeze up, break-
up, water clear of ice, melt onset and freeze onset) can be a useful
iIndicators of climate variability and change

— Trends in ice cover changes have been observed in the northern
hemisphere and related to climate variability

Factors that affect phenology

— Climatic B
- Air temperature (and radiation)® &
= Precipitation B e

= Wind speed and direction

— Terrestrial (non-climatic)
= Morphometry (depth,
shape, size)

- Inflows (streams, runoff) g7 | MODIS imagery acquired during the
: ‘- % break-up period over Great Slave

Lake in 2004 (Howell et al., 2009)

Brown and Duguay, 2010



Response of lakes to climate

Freeze-up (ice-on) and break-up (ice-off) trends for
lakes of the Northern Hemisphere
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Response of lakes to climate

CFO date : 1966-1995 Trends in freeze_up
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Response of lakes to climate

Arctic’Ogean
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, 2006

Atlantic Ocean
Duguay et al.
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Response of lakes to climate

2000

Positive phases of
ENSO (El Nifo),
the PDO, the PNA,
and the NAO/AO
are shown.

Negative phases of
these oscillations
are associated with
opposite
temperature
changes and lake
ice durations.

Prowse et al., 2011



Response of lakes to climate

Global lake temperature trends

* Average warming rate of
0.45 degrees Celsius per
decade, with some lakes
warming as much as 1
degree per decade.

« The warming trend is
global, and the greatest
Increases are in the mid-
to high-latitudes of the
Northern Hemisphere.

167 large lakes from NOAA AVHRR

Schneider and Hook, 2010



Implications of changing ice cover and
temperature of lakes

Impact of earlier break-up on the energy balance of Great
Slave Lake, N.W.T., Canada (Source: Rouse et al., 2003)

An analogue for
climate change?
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Earlier break-up date (one month from normal) during the El Nifio year of 1998 greatly
enhanced evaporation totals compared to 1997 and approached average values for
the lower Laurentian Great Lakes (Schertzer, 1999).



Implications of changing ice cover and
temperature of lakes

Timing of ice events important for many aspects

— E.g. High Arctic, changes in the ice phenology are resulting in some
perennial covered lakes changing to an annual ice regime and longer ice
free seasons resulting in species shifts within the lakes

Changes in ice cover (phenology, thickness and composition) and
water temperature affect water resources, recreation, ecology,
transportation




Water properties

Phase diagram of water and ice
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Source: http://lwww.its.caltech.edu/~atomic/snowcrystals/ice/ice.htm

The plot shows the
phase diagram of water.

The triple point of water
- when ice, water, and
water vapor can coexist
- Is at a temperature of
0.01°C (0°C = 273.16
K), and a pressure of
6.1 mbar.

Water is the only
substance which we
commonly experience
near its triple point in
everyday life.
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Water properties

Density of freshwater

Density of Water

|
Temperature (°C)

The graph shows the
density of liquid water vs
temperature.

The density of water
Increases as the
temperature is lowered, but
below 4°C this trend is
reversed.

The reason it can show
liquid water below 0° Cis
that water can be
supercooled.



Water properties

Density of freshwater and seawater

Density versus Temperature
for Seawater and Freshwater

Seawater S

Temperature (°C)

©The COMET Program

In fresh water, the maximum density
occurs at a temperature of 4° C. In
the autumn, as surface water cools, it
becomes denser and sinks. Warmer
water from below replaces it. As
freshwater cools below 4° C, it
becomes less dense and convection
ceases. This allows the surface water
to freeze without cooling the entire
body of water to the freezing point.

Seawater is different. Dissolved salt
interferes with the freezing process,
lowering the freezing point to -

1.8° C. Seawater also gets denser as
it cools, right down to its freezing point.
However, this does not mean that the
entire ocean must cool to -1.8° C
before the surface can freeze.



Water properties

Thermodynamic properties of water/ice/snow
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Marshall, 2012



Lake ice properties

Lake Ice Types

Clear/Black Ice

— Appears black as the ice is clear and you can
see down to the darker water and/or bottom

— Snowecover provides insulation and slows -
growth Snow/ White Ic

Snow/Slush/White ice
Black Ice

— Weight of the snow presses ice below
hydrostatic level, water floods surface
through cracks, or percolates from melt.
Forms slush layer that refreezes as white ice

— Redistribution of snow key for snow ice
development
= Tends to develop near shorelines more than in
centre of lakes
— Albedo different from black ice due to light T
scattering from bubbles and small ice crystals R ﬁdf/ y
(appears white, high albedo) | '_ e




Lake ice properties
Lake Ice Thickness

Lake ice thickness
can be highly
variable across a
lake

Heavily influenced
by the overlying
snow depth and
density
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2009-2010 ice season
(a) Monthly average density (gcm-3), (b) snow depth (cm) and (c) ice thickness (cm) from sampling transects on
the lake ice surface 2009/10.

Brown and Duguay, 2011



Lake ice properties

Monitoring ice phenology and ice thickness automatically (in situ)

Malcolm Ramsay Lake, Churchill, MB

: Battery Pack

Acoustic Transducer
Tilt Sensor

8 | Pressure Transducer

il | Temperature Sensor

CCeY0 IMAGE JUN 18, 2003 12:00 281K

Shallow Water Ice Profiler

Brown and Duguay, 2011



Lake ice properties

Monitoring ice phenology and ice thickness automatically (in situ)

Malcolm Ramsay Lake, Churchill, MB

Camera Freeze-up: Visible decay: ~ June 11 Freeze-up: Visible decay: ~ May 31
imagery: October 20 - 27 Break-up: June 26 - July 9 October 13 - 15 Break-up: June 7 - 17
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Tomorrow

| ake ice cover and surface water

temperature Il
Satellite remote sensing



Why remote sensing?

lce monitoring networks have nearly disappeared in the
last 30 years

= (GLRIPD - total observation sites
CID - total observation sites

Historical evolution of SMH! —ice break-up ot?serv§t|on sites
e--o Russia — total observation sites

the number of in situ
lake-ice and river-ice
observation sites
recorded in various
databases.
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Why remote sensing?

GCOS: Lakes as terrestrial ECV

« Lake water level
« Lake surface area

« Lake surface temperature

“Changes in lake volume, level,
and area may be indicators of
changes in climate.

Analysis of temporal and spatial
variability of lake levels and lake
surface areas is important to global
climate research and the planning
and management of regional
resources.

Lake temperature affects freeze-
up and break-up dates, which are
markers used in regional climate
monitoring.”

Stitt, S., Dwyer, J.L., Dye, D.G., Josberger, E.G., 2011. Terrestrial essential climate variables at a glance.
U.S. Geological Survey Scientific Investigations Map 2011-3155, 1 plate.



