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2050 VISION

* By 2050 the Earth will be viewed from
space with better than 1km/1min
resolution

« Computer power will be over 100,000
times greater than it is today

* To exploit this technological revolution,
the world must be digitised
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State Estimations & Physical Interpolation

EO data provide a global view ......

but have a limited & sequential
sampling .....
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Assimilation of data into models
provides an optimal synthesis of
heterogeneous observations
taking account of errors and
dynamical principles ...




Chemical analysis
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Assimilation of O3 data into GCM
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Gulf Stream
eddies

Assimilation of EO data into ocean
models provides the best available

guantitative picture of the ocean state.

Essential building block for the
development of operational marine
services (ROSEYS).

OEerational oceanography

Model dynamics transports EO
information from surface (data-rich
region) to depth (data-poor region).
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XBT data assimilated in March 1996.
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TOGA In Situ Ocean Observing System
Global Tropics

December 1994
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Cross-section in mid Atlantic
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MERIS ocean colour




Ocean eddies in a chlorophyll

« Image from NAS(&




Land Initialization: Motivation

«  Knowledge of soil moisture has a greater impact on the predictability of summertime precipitation
over land at mid-latitudes than Sea Surface Temperature (SST).

Index ot Precipitation Predictability {(JJA):
Given Predictability of S5Ts

Given Predictability of S5Ts and Land Moisture
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Environmental Forecasting

EO data are critical for monitoring
the global environment but
managing risks requires forecasts

Assimilation of data into models is
at the heart of operational
prediction ....
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Impact on NWP at the Met Office

Global NWP Index
Observation based — 12 Month Mean — Normalised to Mar 2000

110

108

106

104

102

100

98

Index

26

94

92

20

33

86\:1 T-- T--

Mar 99. 3D-Var/ /

and ATOVS Oct 99. ATOVS as radiances,| ~ Feb/Apr O1. 2nd satellites,
SSM/I winds ATOVS + SSM/I

Jul 99. ATOVS over Siberia, May 00. Retune
sea-ice from SSM/I 3D-Var



Weather forecasting
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Satellite data have contributed to
the continuous improvement of
forecast quality with enormous
benefits for society.

ST

LONG-WAVE SHORT-WAVE CH, OXIDATION

Numerical Weather Prediction:
» Sophisticated atmospheric models.

» Most mature assimilation techniques
(able to ingest sounding radiances).

wa\ > Very big user of EO data.
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Seasonal Prediction

Coupled models are now routinely used
to make probabilistic prediction of the
mean state of climate several months
ahead. Enormous potential for EO!.

El Nino 1997/1998
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Initialised Climate predictions

ensemble hindcast (DePreSys ocean 1990-2001)
l T T

* Global Surface Air
Temperature hindcasts

from HadCMS3 (following Smith
et al 2007 Science)

— Black line Obs.

— Ensemble mean of Nov 2-
year hindcasts

SAT anomaly
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Observing System Design

Observing systems should help to
advance our current state of
knowledge .....

Model sensitivity experiments
allow us to target observations
and to evaluate objectively the
incremental value of EO data.
Potential cost savings!




Numerical Laboratorx

e Where/What should we measure?
==  Data Assimilation helps to identify sensitive
— T .-1| regionswhere observations would maximise
RFebng::afS?r benefits for forecast.
- .-;.a-" A

What is the added value of EO?
Observing System experiments help to
guantify the impact of withdrawing
various (synthetic) data streams on
forecast skill (e.g. evaluation of Swift
mission before launch!).

Day 3 Day 5 Day 7
Forecast Skill (SH)

Courtesy ECMWF



Inverse Modelling

EO provides an indirect measure of
the quantity of interest .....

Assimilation of data into models
enables to one to infer [hon-
observable] geophysical quantities
of interest by exploiting
physical/chemical linkages in the

cvctam




GHG sources & sinks

Models play a diagnostic role by helping to
interpret observations (e.g. causal relationships)

Synthetic
SCIAMACHY
measurements of
CH, total column
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Assimilation
into a
Chemical
Transport
model
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Methane
Emissions
(critical for Kyoto
inventories)
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Re-analysis



Reanalysis

The need for lone atmosphernic/oceanic data sets

* Researchers need long, consistent, global 4-d
data sets for scientific studies.

* Most researchers do not have access to NWP
systems to make data sets for specific needs.

Why reanalysis?

* Over time, models, assimilation systems and
available observations change.

* Use observation sets from history and
assimulate with one state-of-the-art system.

Reanalysis 15 good for

* Large-scale vanability studies (e g.)
* El-Nino, La-Nina, MJO, NAO,
monsoons, storm tracks.

* Studies of quantities well modelled and well
observed.

Reanalysis 13 not sood for

* Trend studies (due to changes 1n observing
systems).

* Studies of poorly observed quantities (e.g.)
* stratospheric water vapour.

* Studies of dennved quantities, not constrained
by observations (e.g.)

¢ divergent wind, clouds, hydrological
cycle, surface fluxes, vertical wind.

Leading reanalysis data sets

* NCEP/DOE - atmosphere.

* ECMWF (ERA-15, ERA-40) - atmosphere.
* NASA/DAO - atmosphere.

* IMA (JRA-25) - atmosphere.

* GODAE - planned ocean reanalysis.



Biases cause problems with reanalysis 1
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Consistently cooler anomalies
prior to 1979 — the TOVS
satellite era
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Reanalysis is inappropriate for climate trend studies



If the obs are unbiased . the mean error reduces.

Temperature (K)
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Biases cause problems with reanalysis 2

Consider a jump in frequency of the assimilation of an observation type
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Biases (in observations or models) can lead to artefacts (e.g. apparent trends).
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Uses of Ocean Reanalysis

Atlantic MOC at 26N
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Analysed sea level 26-31 Dec 2004 Thermohaline MOC transport:
Global 7a NEMO 18 yr Synthesis with assimilBGiMANF reanalysis compared -
Eg. Better Gulf Stream separation here aids Bryden section based annual i
Altimeter and GOCE assimilation for NCEO) (Black line is assimilation)
Balmaseda et al 2007
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Testing Earth System Models

data assimilation cycles
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extended-range forecasts




Skill Measures:

Observation Increment, (O-F)

The difference between
the forecast from the
first guess, F, and the
observations, O, also
known as observed-
minus-background
differences or the
Innovation vector.

This is probably the
best measure of
forecast skill.
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vapour
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Top: all-sky differences

LW Model minus GERB 1200 UTC

Systematic biases in the UK’s Unified Model
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Bottom: clear-sky differences



Temperature [deg C]

Cloudsat-CALIPSO
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Conclusion

Validate — Initialise — Constrain :

Assimilation Digi World

Science & Services

Value chain

UNDERSTANDING,
MONITORING,
FORECASTING
the Earth System
& global change

Organise — Complement — Supplement D




