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The Data Assimilation Problem 

How can we combine noisy measurements of a system 
with output from an  imperfect numerical model to get 
the best estimate of the (evolving) state of the system?   



What are the benefits of  
data assimilation? 

• Quality control 
• Combination of data 
• Errors in data and in model 
• Filling in data poor regions 
• Designing observing systems 
• Maintaining consistency 
• Estimating unobserved quantities 
• Parameter estimation in models ***** 



Plan 

• Motivation & basic ideas 
• Univariate (scalar) data assimilation 
• Multivariate (vector) data assimilation 

– 3d-Variational Method (& optimal interpolation) 
– Kalman Filter (+ extended KF) 
– Ensemble methods ( + particle filter) 
– 4d-Variational Method 

• Applications of data assimilation in earth 
system science 
 



In what follows, you don’t have to 
follow the mathematics to understand 
the basic ideas and to learn something 

useful! 

 



 
Solving the Data Assimilation Problem 
 
• The observations 
• Their errors  
• Predictions by a numerical model of the system 
• The errors in these predictions 

 
The key idea is to combine observations with predictions 

giving more weight to information with the least error.  
But errors may not be well known! Internal consistency 
checks  on our state estimates are possible, but also 
need independent (unassimilated data).  

 
 



Errrors everywhere 

Random errors: 
• background (a-priori) errors 
• observation errors 
• model errors 
• representation errors 

 
 
Systematic errors: 

• biases in background 
• biases in observations 
• biases in model 

 

All significant sources of uncertainty should be accounted for in data assimilation 

Example 1 – repeated observations of air temperature  

y   (T observations) 

truth 
unbiased 
thermometer 

truth 

biased 
thermometer 

Example 2 – representation errors due to model grid 



Best Linear Unbiased Estimate (BLUE) 

 

Make an estimate (the "LUE") of x as follows :  

ˆ x = (1 − β)xb + βy     linear, unbiased estimate (weights sum to 1)

ˆ x  is the estimate of variable x; 
xb  is the value of the var iable x predicted by a model
 (the "prior", or "background");

y is the observed value of the variable x. 

 

Assume a numerical model predicts x to be xb; 
assume the observed value of x is y. 

Think of these variables as 
RANDOM VARIABLES. 
Assume statistical properties of 
their errors are known 



BLUE 

 

What should we choose for the value of β?

Choose β to minismise the variance of the error in the estimate:

 < ( ˆ x − xt )
2 >,   where xt  is the (unknown) true value of x

This is what we mean by "best."
Note: we never need to know the true 
value of anything, just the statistics of 
the departures from the truth, i.e. the 
error statistics. 

 

ˆ x = xb + β(y − xb )  



Important Points on Error Statistics in 
our treatment of Data Assimilation 

• We assume that error statistics are Gaussian 
(either explicitly or implicitly). Thus we consider 
only the low order moments of the probability 
density functions (pdfs) of random variables: 
mean and variance (or standard deviation). 

• We assume throughout that errors are unbiased 
(average = 0)  

• These are important limitations:  
– Nonlinearity inevitably leads to “non Gaussianity” 
–  Models almost always have some biases somewhere.  

 



BLUE & observation operator 



Representation Error 
 

y 

horizontal distance 

Spatial variation represented by the model: smoother than that of the real world. 

spatial variation in the real world 

we are estimating the “smoothed state,” so representation error associated with observation!! 

observation  

representation error 

model grid spacing 



BLUE (incl. obs. op.) 



BLUE 

 

εa = βεo + (1− βH)εb

where εo = εy +  error in h +  representation error
(yt = h(xt ) +  error in h + representation error)

< ( ˆ x − xt )
2 >=< εa

2 >= β2 < εo
2 > +(1− βH)2 < εb

2 >

where we have assumed errors are uncorrelated, < εoεb >= 0

            σ a
2 = β2σ o

2 + (1− βH)2σ b
2;   A = β2R + (1− βH)2 B

                   



BLUE 

 

Set     
d
dβ

A = 0    and solve for β

βmin = W =
HB

R + H 2B

A = (1−WH)B

Using the observation has given us a better estimate than 
we got from the model alone!

Let H =1 for simplicity (y is a direct measurement of x)

B →∞     ⇒          ˆ x → y  and  A →R

R →∞     ⇒          ˆ x → xb   and  A →B



BLUE with dynamics (toward the KF) 



X 

t 

observation 

model 
trajectory 



Numerical Model 
DAS 

DATA ASSIMILATION SYSTEM 

O 

Data 
Cache 

A 
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F 

model 
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Error Statistics 



Three types of estimation problem  
     (estimate desired at time t) 

t 

t 

t 

filtering (e.g. Kalman filter) 

smoothing (e.g. variational DA)  

prediction 

span of available observations 



The Grand Unifying Principle in 
Data Assimilation 

 
Bayes’s Theorem (involving the 

concept of conditional probability) 



Conditional Probability & Bayes’ Theorem  

 

p(A,B) = p(A | B)p(B) = p(B | A)p(A),
where A and B are two random events

Bayes'  Theorem:           p(A | B) =
p(B | A)p(A)

p(B)
                  

  ∴ p(x | y) =
p(y | x)p(x)

p(y)
,

where x is a state variable of the system we wish to estimate, 
and y is a measurement of that variable. 

So if we have some prior information about p(x),we can update that information 
with an observation y to get p(x | y),  the probability that the system variable has value x
given that a measurement y of that variable has been made. We call it the posterior pdf.



Maximum Likelihood  
(minimizing a “cost function” 

 

Assume we have an observation xo of an unknown variable x. 
Assume we have some prior information that the value of x is xb .
Assume we know the error statistics of these quantities (the error variances). 

p(x | xo) ~ p(xo | x)p(x) = exp −
(xo − x)2

σo
2

 
 
 

 
 
 
exp −

(x − xb )2

σb
2

 
 
 

 
 
 

J(x) = −ln p(x | xo) ~
(xo − x)2

σo
2

 
 
 

 
 
 

+
(x − xb )2

σb
2

 
 
 

 
 
 
,   the COST FUNCTION

Find x such that J(x) is a minimum or such that p(x | xo) is a maximum,
i.e maximum probability or likelihood. 

This x is our estimate  ˆ x .



 

ˆ x ~ xo

σo
2 +

xb

σb
2 .    Easy to show from form of p(x | x0) that 1

σa
2 =

1
σo

2 +
1

σb
2

The bigger the variance, the less weight is given to the information. 

The precision of the estimate is better than those of the observation or background. 

To get an equals sign in the above, divide by the sum of the weights.  We get :

ˆ x = x +W (xo − xb )

W =
σb

2

σb
2 +σo

2     and   σa
2 = (1−W )σb

2

So maximum likelihood method gives same results as minimum variance
for Gaussian statistics.



BLUE or Optimal Interpolation (OI): 
multivariate case  

 System and observations must be 
represented by vectors not scalars. 
 
Error variances become covariances, 
represented not as numbers but as 
matrices. 
 
Error covariances represent the error 
correlations between different variables, 
e.g. temperature at different grid points, or 
temperature and wind at the same point.  



Multivariate Case 
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Errors 



The Error Covariance Matrix 
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Background Errors 

• They are the estimation errors of the 
background state (a model forecast): 
 
 

• Assume average (bias) 
• covariance 

 
 

 

εb = xb − x

 

< εb >= 0

 

B =< εbεb
T >



The Observation Operator 
The observations (observation vector) are in general not direct measurements of  
the state variables (state vector), e.g. in remote sensing from space.  
In data assimilation, we need to compare the observation vector with the 
 state vector. The observation operator allows this. 
 It is a mapping from state space to observation space.  

 

ymod = h(x)

x x x x x x 

 

Ri = Bi(T( p))∫ dτ
dp

Data assimilation algorithms often use the matrix  
evaluated generally at a state forecast by the model  
(background state or first-guess state) 

 

H =
∂h
∂x x =x B



Observation Errors  
They contain: 
•  errors in the observation process 

(instrumental error), 
•  errors in the design of    , and 
•   “representation errors”  

 

h

 

εo = y − h(x)

 

R =< εoεo
T >

, where     is the true state   

 

 

  

x

assuming no bias 



Optimal Interpolation  
(the BLUE) 

 
 

• BLUE = Best linear unbiased estimate 
• Algorithm derived as a special case of 

3D-var. 



Algorithms require statistics of 
model/observation comparison  

 

ε = y − h(xb ) = y − h(x + xb − x)

 = y − h(x ) + H(xb − x)

 = εo + Hεb

 

< εε T >=< εoεo
T > + < Hεbεb

THT >

           = R + HBHT

 

y − h(xb )



BLUE Estimator (recursive) 

• The BLUE estimator or “analysis” is given by: 
 
 

 
• The       matrix plays a key role in determining 

the structure of the analysed fields.  
• Matrix inverses expensive to compute so 

reduce dimension by “local analysis” 
• We can derive an explicit expression for the  

analysis error covariance matrix: 
 
 

  

 

x a = xb + K(y − h(xb))
K = BHT (HBHT + R)−1

BKHIA )( −=
 

B



Assumptions Used in BLUE 
• Linearized observation operator: 

 
 

       
• Errors are unbiased:  
 
 
• Errors are uncorrelated: 

 
 

 

h(x) − h(xb) = H(x − xb)

 

< xb − x >=< y − h(x) >= 0

 

< (xb − x)(y − h(x))T >= 0



Innovations and Residuals 

• Key to data assimilation is the use of 
differences between observations and 
the state vector of the system 
 

• We call                               the innovation 
 

• We call                               the analysis 
                                              residual 

 

y − h(xb)

 

y − h(x a )

Give important information  



MIPAS observations 6 day model forecast 

Analysis 

Ozone at 10hPa, 12Z 23rd Sept 2002 



bx
3D variational data assimilation - ozone at 10hPa 



bx )( bh xy −
3D variational data assimilation - ozone at 10hPa 



bx )( bh xy −

))(( bh xyK −

3D variational data assimilation - ozone at 10hPa 



bx )( bh xy −

))(( bb h xyKx −+ ))(( bh xyK −

The data assimilation cycle: ozone at 10hPa 



3D Variational Data 
Assimilation (3D-Var) 



The Bayesian View of DA 

 

p(x | y) =
p(y | x)p(x)

p(y)
∝ p(y | x) p(x)

p(x | y) ∝ exp{−
1
2

(x − xb )T B−1(x − xb )} exp{−
1
2

(y − h(x))T R−1(y − h(x))} 

p(x | y) ∝ exp−{
1
2

(x − xb )T B−1(x − xb ) +
1
2

(y − h(x))T R−1(y − h(x))}

Maximum likelihood : find x such that p(x | y) is a maximum.

Equivalently, define cost or penalty function (a scalar) by :  
J(x) = −ln p(x | y).

J(x) =
1
2

(x − xb )T B−1(x − xb ) +
1
2

(y − h(x))T R−1(y − h(x))

Find x to minimise the cost function 
 



Minimizing the Cost Function 

 

J(x) =
1
2

(x − xb )T B−1(x − xb ) +
1
2

(y − h(x))T R−1(y − h(x))

The problem involves a (badly constrained) optimization problem in 107 dimensions! 



Algebraic Minimization of the Cost Function 

 

Assume it is reasonable to linearise the forward model h.

h(x) ≈ h(xb ) + H(x − xb )

Then we can show that ∂J
∂x = B−1(x − xb ) + HTR−1(y − h(x))

Setting ∂J
∂x = 0 gives

xa = xb + BHT (R + HBHT )−1(y − h(xb ))

This is the same as the Optimal Interpolation or BLUE formula!



 



Remarks on 3d-VAR 

• Can add constraints to the cost function, 
e.g. to help maintain “balance” 

• Can work with non-linear observation 
operator H.  

• Can assimilate radiances directly 
(simpler observational errors). 

• Can perform global analysis instead of 
OI approach of radius of influence. 



Choice of State Variables and 
Preconditioning 

• Free to choose which variables to use to 
define state vector, x(t) 

• We’d like to make B diagonal 
– may not know covariances very well  
–  want to make the minimization of J more 

efficient by “preconditioning”: transforming 
variables to make surfaces of constant J 
nearly spherical in state space 



x2 

x1 

Cost Function for Correlated Errors 



x2 

x1 

Cost Function for  

Uncorrelated Errors 



x2 

x1 

Cost Function for 
Uncorrelated Errors            

Scaled Variables 
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