Basics, methods & applications

ACTIVE MICROWAVE REMOTE SENSING OF LAND SURFACE HYDROLOGY

Active microwave remote sensing of land surface hydrology

- Landsurface hydrology:
 - Near surface water storage: soil, snow, water bodies
- Introduction
 - Why microwave remote sensing?
 - Why active?

Why microwave remote sensing

- Cloud independent
- Therefor frequent acquisitions possible, what is of interest when we study fast changes
- Complements optical and thermal
- For climate modelling interesting regional to global products available
- Aim
 - Basic understanding on what radar based products can offer with respect to land surface hydrology

Why active systems (radar)

- Systems available which cover different scales and part of the electromagnetic spectrum
- Specific techniques available which offer unique insight into landsurface processes such as movements or surface structure
- Several relevant satellite launches in 2014
- Sentinel-1 as part of copernicus is a radar system! + Future Biomass mission
- To some extent similar application potential like passive microwave sensors

- Microwaves ~1cm 1m
- But (spaceborne) systems work on ~ 2 23cm

Jensen 2005

X C L Ku P S

- ✓ Wavelength Bands
- Polarization
 - Single, dual, cross ...

HH VV HV VH

Basics - Polarization

- Send Received
 - HH or VV
 - HV or VH

single polarized	- HH or VV (or possibly HV or VH)	
dual polarized	- HH and HV, VV and VH, or HH and VV	
alternating polarization	- HH and HV, alternating with VV and VH	
polarimetric	- HH, VV, HV, and VH	

Polarimetry analyses polarization state of an electromagnetic field

Basics - Polarization

- Cross polarisation modes detect the amount of backscatter whose polarisation has changed as a result of surface interaction
- Polarisation determines the penetration depth (beside the actual wavelength)

X C L Ku PS

- ✓ Wavelength Bands
- ✓ Polarization
 - Single, dual, cross ...
- Incidence angle
- Range
- Azimuth

HH VV HV VH

Terminology

- altitude above-groundlevel, H
- Nadir
- azimuth flight direction
- range (near and far)
- depression angle (γ)
- look angles (φ)
- incidence angle (Θ)

Jensen, 2009

Backscatter - local incidence angle

Near range

far range

Normalized measure of the radar return from a distributed target ESA Radar Glossary

- Data are acquired
 - At ascending and descending orbit, and
 - in different modes
 - vary in spatial resolution and area covered

Example ENVISAT ASAR Right looking Varying length of frame

Far range Near range

Normalization

before normalization

after normalization

Distortion phenomena

Rees 2001

Image distortion phenomena in side-looking radar imaging: (left) Foreshortening and (right) Layover & shadowing

Local Incidence Angle - LIA

LIA for flat area

LIA for Hochschwab, eastern Alps

ENVISAT ASAR WS examples

Orthorectification of SAR – terrain correction

Source: W. Wagner

Basics - SAR Pre-processing

- ✓ Radiometry and geometric distortions
 - Orthorectification
 - Normalization

- Speckle reduction
 - Multilooking
 - Adaptive filtering

Speckle: caused by random constructive and destructive interference from the multiple scattering returns that will occur within each resolution cell

X C L Ku PS

HH VV HV VH

- ✓ Wavelength Bands
- ✓ Polarization
 - Single, dual, cross ...
- ✓ Incidence angle
- ✓ Range
- ✓ Azimuth
- Beam
 - A certain area on the surface is illuminated
 - Spatial resolution?
 - The product grid is ,nominal resolution'

spatial resolution
 (distance between distinguishable objects)

Ground instantaneous field of view Footprint in case of non-imaging sensors

range

spatial resolution

$$R_a = \frac{S \times \lambda}{L}$$

S - Slant range distance

- γ Wavelength
- L Antenna length

range

½ of the pulse length

Resolution for real aperatures – coarse from space!

Basics - spatial resolution

Basics — instruments and applications

- real aperatures instruments
 - scatterometer
 - gridding required
- Used for global applications
 - Frequent acquisitions
 - Operational (designed for ocean applications)

Basics — instruments and applications

- SAR synthetic aperture radar
 - A technique to overcome the resolution problem, but local to regional applications
 - Resolution azimuth and range difference
 - Data availability a matter of request and priority

Sentinel – 1 (launched April 2014)

(WV)

Interferometric Wide Swath Mode (IW)

- Polarisation schemes for IW, EW & SM:
 - ✓ single polarisation: HH or VV
 - ✓ dual polarisation: HH+HV or VV+VH
- Wave mode: HH or VV
- SAR duty cycle per orbit:
 - ✓ up to 25 min in any of the imaging modes
 - ✓ up to 74 min in Wave mode

Main modes of operations:

- IW over land and coastal waters
- EW over extended sea and sea-ice areas
- WV over open oceans

Sentinel 1 – acquisition plan (selected modes)

TerraSAR-X (since 2007)

http://terrasar-x-archive.infoterra.de/

Acquisition plan

ALOS-2 PALSAR (May 2014)

Wetlands & deforestation

Crustal deformation

Past sensors - SAR

- Potential service demonstration
- Mid-term changes

- ENVISAT ASAR 2002-2012
 - C-Band

Scatterometer

- ASCAT on Metop A and B
 - For meteorological purposes so continuation ensured
 - Operational products, global
 - C-band

Past sensor - scatterometer

- ERS1, ERS2 (1991-2011)
 - C-band
- Seawind on QuikScat (1999-2009)
 - Ku -band

Past sensor - scatterometer

Examples

	ERS-1/2	SeaWinds
FREQUENCY	5.3 GHz	13.6 GHz
AZIMUTHS	\leq	
POLAR.	V ONLY	V-OUTER/H-INNER
BEAM RESOLUTION	RANGE GATE	PENCIL-BEAM
SCI. MODES	SAR, WIND	WIND/HI-RES
RESOLUTION	25/50 km	25 km/6x25km
SWATH	500	1400,1800
INCIDENCE ANGS	18° - 59°	45' & 54°
DAILY COVERAGE	< 41 %	92 %
DATES	92-96 & 96-	5/99 & 11/01

Perry 2000

Quelle: http://www.scp.byu.edu/

Seal Winds

1999 - 2009

Daily coverage

Perry 2000

Distribution of footprints and their time stamp Bartsch et al. 2007

Naeimi 2010

Images based on ,Eggs': 4.45 km Effective res. 8.-10. km

(source BYU)

Example Metop ASCAT

Example Metop ASCAT

ASCAT soil moisture product gridding

Whats in space - soon

- SMAP soil moisture active passive
- currently planned for October, 2014

Frequency: 1.26 GHz

Polarizations: VV, HH, HV (not fully

polarimetric)

Relative accuracy (3 km grid): 1 dB (HH and

VV), 1.5 dB (HV) Data acquisition:

High-resolution (SAR) data acquired over

land

Low-resolution data acquired globally

· Data resampled and posted on 1

· Each resolution cell now has

decreased measurement

multiple "looks" at surface,

> 1 km near nadir.

variance.

km grid, resolution may still be

· Native resolution: 250 m in

· Each resolution element

"look" at surface.

azimuth.

range, 400+ m resolution in

constitutes one independent

NASA SMAP

- Wavelength is very important
 - Penetration depth into soil, snow, vegetation
 - Change of direction
- Polarization is very important
 - Penetration depth into especially vegetation (has a regular structure)

 + Reflection enhanced when rel. permittivity (dielectric constant) and/or roughness is high

Examples C-Band (ASAR WS)

Examples C-Band

ASCAT

frozen/dry/inundated/melting snow

Naeimi et al. 2012 Satu

Saturated/ corner reflection

Seawinds QuikScat - noise

Bartsch, (2010)

Snowmelt

QuikScat: Precise timing from diurnal difference

http://doi.pangaea.de/10.1594/PANGAEA.834198

Supplement to: Bartsch (2010): Ten Years of SeaWinds on QuikSCAT for Snow Applications. Remote Sensing, 2(4), 1142-1156, doi:10.3390/rs2041142

Freeze/thaw

Metop ASCAT

Fig. 18. Comparison of the SSF with (a) the air temperature measured at the nearest WMO meteorological stations, the surface temperature from (b) GLDAS-Noah and (c) ERA-Interim reanalysis data sets.

- Paulik et al. (2014)
 doi:10.1594/PANGAE
 A.832153
- (2007-01 to 2013-12)

ORCHIDEE-Land surface model

Gouttevin et al. 2013

Scattering coefficient response to snow wetness at 9 GHz.

Ulaby & Stiles 1980

Strong backscatter increase in a few days

Increase of snow depth in a very short time?

(WMO512)

Bartsch et al. 2010

Bartsch (2010)

Snow profile taken on the 19th of November 2006. (Photo: Florian Stammler)

Rennert et al. 2009

number

Semmens et al. (2013).

Wetland mapping

- Inundation permanent, seasonal
- Wet soils

Inundation mapping with SAR

Specular Reflection over water

Bartsch et al. (2008)

West Siberien Lowlands Test with more than 4000 subsets of 0.25°

Bartsch, A., Trofaier, A., Hayman, G., Sabel, D., Schlaffer, S., Clark D. & E. Blyth (2012): Detection of open water dynamics with ENVISAT ASAR in support of land surface modelling at high latitudes; Biogeosciences, 9, 703-714.

Wetland areas

Volume scattering in vegetation

Surface roughness

Near surface soil moisture

Double bounce – standing water (permanent and emerging vegetation)

Mostly smooth water

ESA STSE ALANIS Methane

ESA STSE ALANIS Methane -

experimental product from ENVISAT ASAR WS

Example

- Best available coverage among SAR sensors
- Actual coverage does however vary
- C-Band sensitivity to weather in case of this specific application
- Continuity with Sentinel 1

ESA STSE ALANIS Methane -

experimental product

10 days

All summer including saturated area

ESA STSE ALANIS Methane -

experimental product

Supplement to: Reschke, Julia; Bartsch, Annett; Schlaffer, Stefan; Schepaschenko, Dmitry (2012): Capability of C-Band SAR for operational wetland monitoring at high latitudes. Remote Sensing, 4(12), 2923-2943, doi:10.3390/rs4102923

Volume scattering in vegetation

Surface roughness

Near surface soil moisture

Two adjacent pixels, same total backscatter

How to separate those contributions

- Use a model
- Exploit different polarizations
- Combine with optical
- Rule out changes of certain mechanisms over time

Volume scattering in vegetation

Surface roughness

Near surface soil moisture

Time series for a single location (C-band)

Assumptions:

- No rougness change
- Vegetation impact can be modelled from incidence angle variation
- References need to be known

Wagner et al. 1999

ASCAT

Figure 2. ASCAT swath geometry. Dimensions are given for the right swath, and the left swath is symmetric with respect to the satellite ground track.

Basics

Backscatter - local incidence angle

K_υ-Band; Stephen 2006

Time series for a single location (C-band)

0.0 07.07.09 07.07.09 07.07.09

Bartsch et al.

1999

Penetration depth?

Figure 4. In situ volumetric and ASCAT relative near-surface soil moisture (p<0.05 for sites with R>0.2).

Bartsch et al.

- (a) WMO
- But roughness change is possible
 - In areas with high water fraction
 - Change of scattering mechanism in part of the footprint – flooding, freezing, snow

Comparison with landsurface model ORCHIDEE, Gouttevin et al. 2013

Summary

- Soil moisture
 - Footprint heterogeneity
 - Weather impact!
- Snow
 - Derived information: frozen/unfrozen
 - Timing crucial (diurnal changes)
 - Short wavelength required
- Inundantion
 - Weather impact!