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Thermal Infrared Remote Sensing 

§ TIR at high Resolution (Thermal Camera) 
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Radiation at wavelengths between 3 - 14 µm  

All materials at 
temperatures above 
absolute zero (0 K,  
-273°C) continuously 
emit electromagnetic 
radiation. The earth with 
its ambient temperature 
of ca. 300 K has its peak 
energy emission in the 
thermal infrared region at 
around 9.7 µm.  
 

Source: http://bigfootproof.com/groups/visible-invisible-d2-ranges.html 

Thermal Infrared Remote Sensing 

Thermal Infrared Radiation 
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Atmospheric Windows in the Thermal IR Region 
 situated between 3 - 5 µm and 

8 - 14 µm. The latter has 
narrow absorption band from 9 
to 10 µm caused by ozone, 
which is omitted by most 
thermal IR satellite sensors.  
 
      Note that reflected sunlight 
can contaminate thermal IR 
signals recorded in the 3 - 5 µm 
windows during daytime.   
 Source: Sabins (1997) 
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Planck’s Blackbody Radiation Law 
       Describes the electromagnetic 
radiation emitted from a blackbody at 
a certain wavelength as a function of 
its absolute temperature. 
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Source: Lillesand et al. (2008) 

Mλ = spectral radiant exitance [W m-2 μm-1] 
h = Planck’s constant [6.626 x 10-34 J s] 
c = speed of light [2.9979246 x 108 m s-1] 
k = Boltzmann constant [1.3806 x 10-23 J K-1] 
T = absolute temperature [K]  
λ = wavelength [μm] 
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Stefan-Boltzmann Law 

      Describes the total electromagnetic 
radiation emitted by a blackbody as a 
function of the absolute temperature which 
corresponds to the area under the radiation 
curve (integral). 

4TM s=
M = total radiant exitance [W m²] 
T = absolute temperature [K] 
σ = Stefan-Boltzman constant  
[5.6697 x 10-8 W m-2 K-4] 

   
à The higher the temperature of the radiator, 
the greater the total amount of radiation it emits.  

Area under 
the curve 

Source: Lillesand et al. (2008) 
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Wien‘s Displacement Law 

      Describes the wavelength at which the 
maximum spectral radiant exitance occurs. 

T
A

=maxl

λmax = wavelength of maximum  
spectral radiant exitance [μm] 
A = Wien‘s constant [2897.8 μm K]  
T = absolute temperature [K] 

      à With increasing temperature λmax  

          shifts to shorter wavelengths. 
Source: Lillesand et al. (2008) 

Maximum spectral 
radiant exitance 
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VIS versus SWIR 
Landsat 7 ETM+ 14. Feb. 2000, Kilauea Volcano (Hawaii) 

False color 
composite 

(RGB, 7 5 4) 

True color 
composite 

(RGB, 3 2 1) 
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SWIR versus TIR 

Gray scale 
Band 6 

Gray scale 
Band 7 

Theoretical Background 

Landsat 7 ETM+ 14. Feb. 2000, Kilauea Volcano (Hawaii) 
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Interaction of Radiation with Terrain Elements 

1=++ lll tra

       α, ρ, τ are wavelength dependent and represent ratios between the absorbed, 
reflected and transmitted components of the incident energy striking a terrain 
element and the total energy incident on the terrain element, respectively.   

absorbed radiation (α) 

transmitted radiation (τ) 

reflected radiation (ρ) incoming radiation 

Theoretical Background 
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Blackbody Concept 

      A blackbody is a hypothetical, ideal radiator that totally absorbs and re-emits 
all energy incident upon it. The total energy a blackbody radiates and the 
spectral distribution of the emitted energy (radiation curve) depends on the 
temperature of the blackbody and can be described by:  

 Planck’s radiation law 

 Stefan-Boltzmann law 

 Wien’s displacement law 

 

Theoretical Background 

absorbed 
radiation emitted radiation 
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Radiation of real Materials and Emissivity 

      Real materials do not behave like blackbodies. They emit only a fraction of 
the radiation emitted by a blackbody at the equivalent temperature. This is 
taken into account by the EMISSIVITY, or the emissivity coefficient (ε): 
 

 

 

 

 

       Emissivity can have values between 0 and 1. It is a measure of the ability of a 
material both to radiate and to absorb energy.  
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Theoretical Background 

M = total radiant exitance [W m²] 
T = absolute temperature [K 
σ = Stefan-Boltzman constant] 
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Kirchhoff’s Radiation Law 

      Since most objects are opaque (do not let radiation transmit) to thermal 
infrared radiation (τλ = 0): 

    

      à The higher an object’s reflectance in the thermal IR region, the lower its 
emissivity and vice versa.  

1=++ lll tre

1=+ ll re

According to Kirchhoff’s radiation law: 
      

Spectral emissivity of an black body object equals its spectral absorbance: 
“good absorbers are good emitters”      
      On the basis of Kirchhoff’s radiation law αλ can be replaced with ελ:  

 

ll ae =

Theoretical Background 

(for a blackbody) 

Thermal Infrared Remote Sensing 



Dr. Claudia Künzer 

      Provided that the emissivity of a material is known, its absolute temperature 
(kinetic temperature, Tkin) can be derived from the radiation it emits. If the 
emissivity is not considered, only the brightness temperature (radiant 
temperature, Trad) of the material can be determined. Since it is valid that: 
 

 

 

   

kinrad TT e=

kinrad TT =

 
the radiant temperature of a real material is always lower than its kinetic 
temperature. However, for a blackbody with ε = 1 it applies that:   
 

Theoretical Background 

!!! Radiation of real Materials !!! 

sensed touched 
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Radiation of real Materials 

      Emissivity depends on wavelength, surface temperature, and some physical 
properties of the surface, e.g. water content, or density.  

 

 

 

 

 

Material Average Emissivity 
over 8-14 μm 

Clear water 0.98 - 0.99 
Healthy green vegetation  0.96 - 0.99 
Dry vegetation 0.88 - 0.94 
Asphaltic concrete 0.94 - 0.97 
Basaltic rock 0.92 - 0.96 
Granitic rock 0.83 - 0.87 
Dry mineral soil 0.92 - 0.96 
Polished metals 0.06 - 0.21 So
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Radiation of real Materials 

Because of 
emissivity different 
objects can have 
the same kinetic 
temperature but 
differ significantly 
in the radiation 
they emit and their 
radiant 
temperatures !!! 
 

Source: Sabins (1997) 
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Radiation of real Materials 
visible (left) vs. thermal IR (right), Sacramento, CAL, USA 
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Changes in Emissivity of Surfaces …… 

Actually should be taken into  
Account for any urban heat island 
related analyses in fast growing 
cities 
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Radiation of real Materials 
Theoretical Background 

Munich Downtown 
with 
 
English Garden 
Main Station 
Oktoberfest ‚Wiesn‘ 
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Radiation of real Materials 

      While the emissivity of a blackbody is always 1, real materials show a certain 
wavelength dependence and are referred to as selective radiator. A graybody, 
in turn, has an emissivity less than 1 but constant at all wavelengths. 

Source: Lillesand et al. (2008) 
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Radiation of real Materials 

      When broadband sensors are used emissivity for any given material type is 
often considered to be constant in the 8 - 14 µm range, which means these 
materials are treated as graybodies (but e.g. ASTER ….).   
 

Source: Lillesand et al. (2008) 
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Radiation of real Materials 
 

      Emissivity spectra of different igneous 
rocks. Arrows show centers of adsorption 
bands. Spectra are offset vertically (Source: 
Sabins 1997). 
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2 3 4 5 6 7 8 9 10 11 12 13 14 15

AVHRR 3
   1.1 km

AATSR
   1 km

MODIS
   1 km

  BIRD
370 m

TET-01/BIROS
             356 m

Landsat 5
       120 m

ASTER
   90 m

Landsat 7
         60 m

   TIMS
5-50 m

    DAIS
 3-20 m

SEBASS
    1-5 m

wavelength [μm] 

Sensor Systems operating in the thermal IR Region 

128 bands 128 bands 

6 bands 
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Diurnal Temperature Variation 

      Each terrain element 
shows a distinctive diurnal 
temperature cycle 
determined by the 
interaction between the 
thermal inertia of the object 
and the history of the 
incoming radiation from the 
sun.  

      à The effects of diurnal temperature variation has to be taken into consideration 
by mission planning and image interpretation. 
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Diurnal Temperature Variation 

      Daytime 
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Nighttime 

Middleton (WI), USA 
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Diurnal Temperature Variation and Solar Effects Day/Night 
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Nighttime 

  Caliente and Temblor Ranges (CAL), USA 

      
Daytime 
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Intra-Annual Temperature Variation 
Theoretical Background 
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Thermal Inertia 
Thermal inertia: measure of the resistance of a material to temperature changes.  

In general, materials with high thermal inertia have more uniform surface temperatures 
throughout the day and night than material of low thermal inertia 

 
The difference between 
maximum and minimum 
temperature occurring 
during a diurnal solar 
cycle is called ΔT (Sabins 1997).  

Source: Sabins (1997) 
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Apparent Thermal Inertia 

      Materials with low thermal inertia have a relatively high ΔT. The opposite is 
true for materials with high thermal inertia.    
      ΔT can be derived by subtracting the minimum nighttime temperature from 
the maximum daytime temperature of two images covering the same area. 
Then the apparent thermal inertia (ATI) can be calculated by: 
  

T
AATI

D
-

=
1

      A is the albedo in the visible band and compensates for the effects that 
differences in absorptivity have on radiant temperature.  

Theoretical Background 
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Influence of the Atmosphere on the thermal IR Signal 

Scattering processes are negligible in the thermal IR region because of the long 
wavelength, but atmospheric absorption and emission by water vapor, CO2 and O3 are 
prevalent. Within atmospheric windows effects are less severe. However, signal 
recorded at the sensor (L) consist of the radiation emitted from the terrain element (εLB) 
modified by the transmission of the atmosphere (τ), the atmospheric upwelling 

radiation (Lu) and the atmospheric reflected downwelling radiation (Ld).  
 
      Atmospheric correction methods: 

• - Empirical line method (ELM) 

• - Radiative transfer model (RTM) 

• …… 

εLB(T) 

Lu 

Ld 

L = a+b*DN 

Atmospheric correction of thermal IR imagery 

Thermal Infrared Remote Sensing 
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Empirical Line Method (ELM) 

      ELM applies a linear regression to each band by plotting DN or at-satellite reflectance 
(Lλ) values against in-situ temperature measurements recorded simultaneous with 
satellite overpass. The resulting coefficients a (offset) and b (gain) are used to transform 
each pixel value in the scene to its kinetic temperature (Tk).  

      Drawback: 

in-situ measurements are 
cost intensive, time-consuming 
and not available for remote 
areas or images from the past 

 

DN or Lλ 

Tk 

a (intercept) 

b (slope) 

DNbaTk *+=

in-situ temperature 
measurements 

Atmospheric correction of thermal IR imagery 
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Radiative Transfer Model (RTM) 

      Based on a radiative transfer equation the path of the radiation through the 
atmosphere can be simulated by: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
p
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at-satellite 
radiance 

emitted surface 
radiance 

upwelling 
radiance 

downwelling radiance 
reflected at the surface 

      RTM (e.g. MODTRAN) is used to solve this equation by modeling the 
atmospheric conditions during image acquisition. Highly variable parameters 
(aerosol and water vapor content) have to be estimated carefully if no in-situ data are 
available. In the thermal IR region the atmospheric water vapor is the dominating 
parameter. 

       

 

Atmospheric correction of thermal IR imagery 
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Summary of Theory 

Atmospheric correction of thermal IR imagery 

Thermal remote sensing data needs to be treated differently from other remote 
sensing data, most important are the laws of Planck, Boltzmann, Kirchhoff and Wien 

Proper preprocessing: Data must first be atmospherically corrected 

Derived temperatures need to be corrected for the emissivity effect, this is usually 
done with the support of precise landcover classificatiosn data 

When comparing multi date imagery diurnal effects must be considered, thermal pixel 
values cannot be compared as easily as multispectral values 

Materials with a high thermal inertia have a less accentuated diurnal cycle, materials 
with a low thermal inertia show a much larger variability (e.g. water, metal), synthetic 
ATI images can help in the differentiation of materials with similar spectral properties 
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Publication: Frey C.M., Kuenzer C., Dech S. (2012): Quantitative comparison 
of the operational NOAA AVHRR LST product of DLR and the MODIS LST product V005. 
International Journal of Remote Sensing. Vol. 33, No. 22, 7165-7183 
 

Operational AVHRR LST Composites for Europe 
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Diurnal Temperature Variations 

à LST shows an extremely high diurnal variation 
à The variation of LST is higher than the variation of air temperatures 
à Figure: up to 4 K difference in LST per hour (mean values of three month) 
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à in extreme and sloped terrain even up to > 10°C  
à LST differences depend on aspect 
 

Diurnal Temperature Variations 
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Geographical coverage for AVHRR data reception from Oberpfaffenhofen, Germany (www.eoweb.de)  

The NOAA-AVHRR-LST Product: a Composite 
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à At the borders of the single scenes: leaps in LST 

Compositing Effects (30.03.03, night) 
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NOAA-AVHRR LST often miss Metadata 

Pixelwise time of acquisition 
Only the day of acquisition is given in the metadata. However, due to the 

compositing techniques and the wide swath width, local times of 
single pixels may differ considerably 

 
Pixelwise acquisition angle 
Usually, no information about the acquisition angle is given. The 
acquisition angle however is important due to thermal anisotropy (BRDF) 
 
Quality information 
No information about the quality of the acquisitions for a given pixel is 

provided 
 
Emissivity 
The emissivity is calculated via the NDVI and not delivered as a separate 

layer. This missing data complicates the interpretation and validation 
of the data. 
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Consequences: 
- The missing metadata (time of acquisition, acquisition angle, 

quality information, emissivity) complicates the interpretation of 
the data considerably. 

The data – as it is – cannot be used as model input, e.g. 
for climate models 

There is a need to investigate the product concerning its 
accuracy. 

NOAA-AVHRR LST often miss Metadata 
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Cross-Comparison AVHRR-LST / MODIS-LST 

Cross comparison of AVHRR LST and MODIS LST c5 daily (day and night 
scenes)  

- Comparison pixelwise for selected pixels 
- Acquisition time difference: daytime 5 minutes, nighttime 30 

minutes allowed 
- Acquisition time is not available for AVHRR, therefore this had 

to be reconstructed 
- Only ‚spatial homogeneous‘ pixels were chosen. 

Four years, each containing only data of one NOAA satellite: 

2003 à only NOAA-16 scenes 

2005 à only NOAA-17 scenes 

2008 à only NOAA-18 scenes 

2010 à only NOAA-19 scenes 

 Data generated by other NOAA-Satellites were eliminated 



Dr. Claudia Künzer Dr. Claudia Künzer 

Geographical coverage for AVHRR data reception from Oberpfaffenhofen, Germany (www.eoweb.de)  

The NOAA-AVHRR-LST Product: a Composite 
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Longitudinal variation 

+ = 

Local time of the 
subsatellite track, 
calculated from the 
starting time t0 and the 
acquisition velocity of 
AVHRR 

Local time 

t0 

Time 

à Input data: Generated positions of the raw scenes 
à Output: Layer giving the acquisition time pixelwise (local time) 

Calculation of pixelwise Acquisition Time 
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MODIS west MODIS east 

AVHRR Europe 
Filter: 

 
1. Pixels in areas 

without path 
overlaps 

2. Low variability of 
NDVI and LST 
inside a 5x5 pixel 
environment 

3. 250m SRTM DEM 
slope is < 2° 

à Homogeneous 
pixels are mostly 
found in North Africa 

AVHRR LST – Homogeneous Pixels 
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Scatterplot AVHRR versus MODIS LST for 2003, daytime 
  
àMaximum time difference: 5 minutes 
à Filter mask: 5 Pixel - 2 degree slope, MODIS view zenith angle (VZA) <30° 

Comparing AVHRR & MODIS LST 
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Scatterplot AVHRR versus MODIS LST for all Years and all Scenes 
  
àMaximum time difference: 5 minutes for daytime, 30 for nighttime scenes 
à Filter mask: 5 Pixel - 2 degree slope, MODIS view zenith angle (VZA) <30° 

r2: 0.980 

Daytime Nighttime 

r2: 0.962 

Comparing AVHRR & MODIS LST 
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3 pixel 3 degree 5 pixel 2 degree 7 pixel 2 degree 

Scatterplot Differences AVHRR versus MODIS LST and 
Homogenity of Area (2003, 2010) 

à Impact of homogenity criteria 
àFiltermask: 2 degree slope à MODIS VZA<30°, varying homogeneous areas 

MAD: 2.49 

MAD: 3.22 MAD: 2.70 

MAD: 2.46 MAD: 2.43 

MAD: 3.83 

Kein Filter 

MAD: 3.17 

MAD: 5.22 

Comparing AVHRR & MODIS LST 
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Scatterplot Difference AVHRR versus MODIS LST depending on 
MODIS VZA 

 
à Influence of the VZA of MODIS 
à (only every 10th pixel plotted) 
à Filtermask: 5 Pixel - 2 degree slope 

<50° <40° <30° MODIS VZA 

Different VZA have a strong impact on the differences 

Comparing AVHRR & MODIS LST 
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Scatterplot AVHRR versus MODIS LST for the Year 
2010, nighttime 

 
àMaximum time difference: 30 Minutes 
à Filtermask: 5 Pixel – 2 degree slope, MODIS VZA<30° 

 
Checked for all years: Slope is for all 4 

investigated years and in both areas < 1  
à with high LSTs AVHRR shows higher values 

than MODIS 

Comparing AVHRR & MODIS LST 
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Cross-Comparison of NOAA-AVHRR LST and MODIS LST 
Day and night with and without homogenity critera 

2D histograms of AVHRR and MODIS LST for all four years, both MODIS 
tiles, day- and nighttimes. Only pixels with viewing angles lower than 
30°were used and the maximal time difference was 5 min for the daytime 
scenes, 30 min for the nighttime scenes. a) with no homogeneity filter 
applied b) with the homogeneity filter applied. 

Comparing AVHRR & MODIS LST 
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Diurnal Mean absolute Difference (MAD) per Day and 
Tile between AVHRR and MODIS LST 

MAD of the Egyptian tile in 2003 daytime
Filter: 5 pixel - 2 degree
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Daytime - MODIS VZA<30° 

Comparing AVHRR & MODIS LST 
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MAD of the Moroccan tile in 2003 nighttime
Filter: 5 pixel - 2 degree

All pixel Maximal 30 Min time difference

Nighttime - MODIS VZA<50° 

Diurnal Mean absolute Difference (MAD) per Day and 
Tile between AVHRR and MODIS LST 

Comparing AVHRR & MODIS LST 
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Daytime Differences (AVHRR LST – MODIS LST) 
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Nighttime Differences (AVHRR  – MODIS ) 

The differences show a clear annual behavious. 
Maximum differences can be found during 
daytime in summer. 
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Statistics of the data after elimination of acquisition angles > 30deg., 
time differences higher than 5 minutes (daytime scenes) / 30 minutes 
(nighttime scenes) and inhomogeneous pixels 

MAD [K] Slope Correlation 
coeffizient r2 

Daytime 2.2 0.89 0.96 

Nighttime 1.4 0.88 0.98 

à Good agreement between the two datasets! 

 

Comparing AVHRR & MODIS LST 

Frey C.M., Kuenzer C., Dech S. (2012):  
Quantitative comparison of the operational NOAA AVHRR LST product of DLR 
and the MODIS LST product V005. International Journal of Remote Sensing. 
33:22, 7165-7183 
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Comparing AVHRR & MODIS LST 
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à Only a strict selection of pixels allowing only certain acquisition time 
differences, homogeneity of the pixels and view zenith angle enables an 
optimal comparison between AVHRR LST and MODIS LST 

à Mean aboslute difference MAD per scene and year ranges from 1.4 to 
3.2 K (daytime scenes) and from 0.9 to 2.2 K (nighttime scenes). 

à A distinct annual course was found in the daytime data. Highest 
differences are found in summer, which may considerably exceed mean 
annual MADs. 

à A weak annual course is found in the nighttime data. 

Summary: Results of the scientific  
Comparison 



Dr. Claudia Künzer Dr. Claudia Künzer 

Application: Remote Sensing of Coal Fire Environments 

Application: Remote Sensing of Coal Fire Environments 

Thermal Infrared Remote Sensing 
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Coal Fires in China: Introduction 

Spontaneous combustion: 
 
C + O2  >> CO2 + 394 KJ/mol 
2C + O2 >> 2CO + 170 KJ/mol 

Application: Remote Sensing of Coal Fire Environments 

Thermal Infrared Remote Sensing 
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coalfires 

Coal Fires: An International Problem 
Application: Remote Sensing of Coal Fire Environments 

Thermal Infrared Remote Sensing 
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Coal Fires: An International Problem 

• Environmental Problems 
• Gas Emissions (CO2, CH4, others) 
• Land subsidence and cracks 
• Threat to human health 
• Regional landscape degradation 

 
• Economic Problems 

• In China: 20 Mio. t coal loss / year 
• Coal fire research needs funding  
• Deserted mining towns; migrations 

 

Application: Remote Sensing of Coal Fire Environments 

Thermal Infrared Remote Sensing 
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Greenhouse-Relevant and Toxic Gases 
Remote Sensing of Coal Fire Environments 

Emitted: 
• Carbon dioxide (CO2) 
• Carbon monoxide (CO) 
• Water vapor (H2O) 
• Methane (CH4) 
• Nitrous oxides (NOx) 
• Sulfur oxides (SOx) 
• (N2O) 
• and other partially toxic gases 

Thermal Infrared Remote Sensing 
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Economic Loss of Valuable Resource 

• 70% chinese energy covered by coal 
 

• 2 billion t/a mined 
 

• 20-30 million tons burning 
 

• the 10-fold becomes inaccessible 
 

• discrepancy: energy demand / production  

Application: Remote Sensing of Coal Fire Environments 

Thermal Infrared Remote Sensing 
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Coal Fire Fighting – Challenges 
 
  Methods: 
 
 
- Digging out and isolating the fires 
 
  
- Water injections for cooling 
 
 
- Covering of fires 
 
 
 

Remote Sensing of Coal Fire Environments 

Thermal Infrared Remote Sensing 
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Location of Study Areas in Ningxia and Inner Mongolia 
Remote Sensing of Coal Fire Environments 

Orientation Map: Chinese Provinces
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Red: vegetation 
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Chinese mining Town Ruqigou in Ningxia 
Remote Sensing of Coal Fire Environments 
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Some Impressions … 
Remote Sensing of Coal Fire Environments 
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Data Analyzed over the Course of the Project 
Remote Sensing of Coal Fire Environments 
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Thermal Expression of Coal Fires in EO Data 
Remote Sensing of Coal Fire Environments 

Outcropping coal seams 

Coal town Wuda 

Yellow River 

Red: vegetation 
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Thermal Expression of Coal Fires In-Situ 
Remote Sensing of Coal Fire Environments 
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Thermal Characteristics of Coal Fires: WEAK Anomalies  
(much different from e.g. forest fires !) 

Remote Sensing of Coal Fire Environments 

Real  
subsurface  
coal fire 

Simulated 
surface 
coal fire 

Statistical fire properties: 
• Fire temparatures strongly varying 
• Coal fire areas in satellite imagery: high  
 variability 
• Coal fire areas do not exceed a certain size 
• Contrast in night time data higher 
• Contrast in winter data better than in  
 summer data 
• Solar influence least pre dawn 
• Surface coal fires give stronger expression 
 

Night: s² bgr. low 
Fire: contrast higher 
 
Day: s² bgr. high 
Fire: contrast low 
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Thermal on Site Experiments with different Fires 
Remote Sensing of Coal Fire Environments 

ZHANG, J. and KUENZER, C., 2007: Thermal surface 
characteristics of coal fires 1: Results of in-situ measurements. 
Journal of Applied Geophysics, 
DOI:10.1016/j.jappgeo.2007.08.002, Vol. 63, pp. 117-134 

ZHANG, J., KUENZER, C., TETZLAFF, A., OERTL, D., 
ZHUKOV, B. and WAGNER, W., 2007: Thermal characteristics 
of coal fires 2: Results of measurements on simulated coal 
fires. Journal of Applied Geophysics, 
DOI:10.1016/j.jappgeo.2007.08.003, Vol. 63, pp. 135-147 
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The capability of MODIS diurnal thermal bands observations 

Regional Thermal Anomaly Detection Algorithm 

Based on statistical  
analysis of image 
subwindows 
and texture 
parameters 
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11x11 to 35x35 
Only if pixel counted 70% of times 
(121 to 1225 times) = thermal anomaly 
 
70%-85%: probability 1 
>85%: probability 2 
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KUENZER, C., ZHANG, J., LI, J., VOIGT, S., MEHL, H. 
and WAGNER, W., 2007: Detection of unknown coal 
fires: synergy of coal fire risk area delineation and 
improved thermal anomaly extraction. In: International 
Journal of Remote Sensing, DOI: 
10.1080/01431160701250432, Vol. 28, pp. 4561-4585 
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Thermal Anomaly Extraction from EO Data 
Remote Sensing of Coal Fire Environments 

Anomalies 

Histogram method 
Moving window filter 

Cluster  

Grouping 

Input image 

Neighborhood statistics 

Probability map of 
coal fire anomalies 
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Coal Fire Area Demarcation: Present Areas and Risk Areas 
Remote Sensing of Coal Fire Environments 

Coal 
waste 
pile fires 

Subsurface 
coal fires 

no coal 
fires 

no 
coal 
fires 

no 
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no 
coal 
fires 

no coal fires 

no 
coal 
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N 

Detection of Unknown Fires in 2004 

<  5 % of full scene as 
possible coalfire area 
 
new fires detected 
4 underground 
2 coal waste piles 
 
risk areas 
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Thermal Anomaly Quantification 
Remote Sensing of Coal Fire Environments 

Daytime summer (09-2002),  
ETM+ tIR 
 
 
 
 
 
 
 
 
 
 
 
 

Daytime winter (02-2003), ETM+ tIR 
 
 
 
 
 
 
 
 
 
 
 
 

Nighttime summer (09-2002), ETM+ tIR 

Daytime summer (09-2002), BIRD 
 
 
 
 
 
 
 
 
 
 
 
 
 

Daytime winter (02-2003), BIRD 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nighttime summer (06-2003), BIRD 
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(Post-) Kyoto Relevance 
Remote Sensing of Coal Fire Environments 

Simplified Model of the Origin of Greenhouse Gases during Complete and 
Incomplete Combustion  

Complete combustion 

1t Coal  
with 750 kg C 

N 
H 
O 
S 

O2 

2.7t CO2 

Incomplete combustion (coal fire) 

5.1t CO2 
Equivalent 

1t Coal  
with 750 kg C 

N 
H 
O 
S 

O2 

0.18t CH4 1.3t CO2 

×21 
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Gas Temporal Variability – Ventilation Pathways 
Remote Sensing of Coal Fire Environments 
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Gas Variability 
Remote Sensing of Coal Fire Environments 
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Coal Fire Mapping in-situ (2000-2005, 2008) 
Remote Sensing of Coal Fire Environments 

• Every year over 600 to 1000 thermal point measurements 
• For each fire point maximum, minimum and average temperature 
• Differentiation in colder and hotter areas 
• Polygons yearly updated and provided to partners, mines, minng authorities 

Fire 10, 2005 Fire 14, 2005 
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Field Mapping versus  
Remote Sensing 

Remote Sensing of Coal Fire Environments 
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Changes in Extent within one Year (2004-2005) 
Remote Sensing of Coal Fire Environments 
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Changes in Extent within one year (2004-2005) 
Remote Sensing of Coal Fire Environments 
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The capability of MODIS diurnal thermal bands observations 

Multi-Sensor Transfer from Landsat to MODIS: 
 

• ASTER à often: ‘occupied’, data not always available 
• LANDSAT à ETM+ erroneous, new mission soon 
• NOAA, AATSR etc, only one thermal band 

 
à  Suitability of low resolution MODIS data to monitor subtle 

coal fire related thermal anomalies ? 
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The capability of MODIS diurnal thermal bands observations 

The MODIS Sensor: Coverage of the Thermal Domain 

• 36 bands,    bands 8-36 1km res.,    Relevant for LST analyses: 
       bands 20-23 (3,66 – 4,08µm)    and    31, 32 (10,78 – 12,27µm) 
 

• TERRA (‘99), AQUA (’02) à 4-5 times within 24 hour cycle (diurnal cycle), if 
large scan angles accepted (overlap frames) 
 

• 4-5 days if nadir (climate rel. bgr. variations over 4 days < than diurnal var.) 
 

• Favorable for hotspot detection within 24 hour cycle: Night. Best: predawn 
(solar effects least accentuated);      Seasonal: early spring or late autumn (or 
if no-snow-area even winter) 
 

• Data free of charge, some preprocessing needed: bowtie correction, 
geocorrection with geolocation files, radiance to temp. conversion 
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The capability of MODIS diurnal thermal bands observations 

Adapted to low resolution MODIS Data 

Automatic 
detection in 
MODIS 
pre-dawn 
data (China) 
 
 
• Coalfires 
• Industry 
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The capability of MODIS diurnal thermal bands observations 

Study Area, Data, Research Setup 

• Jharia coalfield, largest coalfire globally,  
 50-100 fires, 1916 first 

 
• 4 Scenes: Feb 2005 (morning, afternoon,  
 evening, predawn) 

 
• band 20 (3,66-3,84µm) and 32 (11,77-12,27µm), furthest apart = good 

contrast between 20 (outstanding hot spot signals, few reflected and 
mainly emitted components) and 32 (representing temp. pattern in 
common thermal domain, only emitted components) 
 

• Creation of ratio band: 20/32. à pixels with similar emission in both 
bands = values close to 1. Pixels with relatively greater radiance in 20 
yield values > 1.  à Ratio of 20/32 enhances very strong hot spots 
 

• Automated algorithm for the detection of relative thermal anomalies 
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The capability of MODIS diurnal thermal bands observations 

MODIS band 20/32 Ratio Images 

• Predawn, 17. Feb. 2005 
• b, c: background temp. strong var. 

Lighter pixels = higher temps. 
• Ratio image enhances hot thermal 

anomalies as high pixel values and 
suppresses background variation 

Thermal Infrared  
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The capability of MODIS diurnal thermal bands observations 

Application of the Algorithm to MODIS 

 

• 20, 32 and ratio underwent algorithm 
 

• Output: 
      - Background = black, 0; 
      - Regional anomalies counted 70%-85% of times = grey, 1 
      - Anomalies counted > 85% of times = white, 2. 
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The capability of MODIS diurnal thermal bands observations 

Result of Anomaly Extraction  
(20, 32, ratio from predawn) 

• Result overlain on a Landsat scene 
 

• b: anomalies from band 20, c: anomalies from band 
32, d: anomalies from ratio 
 

• Black = non-anomalous, grey: 70-85% counted, white: 
> 85% counted 

• Jharia: most outstanding cluster 
 

• 20, 32: +/- same amount of clusters, but more in South 
of 32 ß clusters not warm enough to stick out in 20 
 

• Ratio: overall fewer anomalies, surpression of 
background, very strong hotspots. Major hot spots 
also within coal fire area. 
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The capability of MODIS diurnal thermal bands observations 

Extraction from Ratio Band  
(morning, afternoon, evening, predawn) 

• a: morning, b: afternoon, c: evening,  
 d: predawn 
• Jharia most prominent cluster 
• Opposite to band 32 here only the hottest 

spots of the coalfire zone extracted 
• Further hotspots from industry, humans 
• Comparing 32 and Ratio: allows to draw 

conclusion on strength of anomaly 
• Statistical calculations: in all images: 

decrease in anomalies towards afternoon, 
increase again towards predawn, cluster size 
largest during predawn (but here human 
influence) 
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The capability of MODIS diurnal thermal bands observations 

Comparison with High-Res. 
TIR Data and Ground Truth 

• ASTER night-time band 15 (10,95–11,65µm) = 
comparable to 32 
 

• anomalous clusters extracted from ASTER = orange, 
MODIS 32 anomalies = grey, hottest zones from 
ratio image = white. All extracted ASTER hot spots 
directly on top of or adjacent to MODIS anomalies 
(slight shift due to rough geolocation?). No clusters 
outside coalfire area or settled region. 
 

• B: Landsat-5 TM based extraction (manually) 
Chatterjee (2006) from 1992 data, confirmed in 2003 
 

• C: in-situ mapping result of Michalski (2004) 
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Remote Sensing of Coal Fire Environments 

KUENZER, C., HECKER, C., ZHANG, J., WESSLING, S. and 
WAGNER, W., 2008: The potential of multi-diurnal MODIS 
thermal bands data for coal fire detection. In: International 
Journal of Remote Sensing, Vol. 29, 923-944, DOI: 
10.1080/01431160701352147 

Summary: multi-diurnal and multi-band Analyses 
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The capability of MODIS diurnal thermal bands observations 

Conclusion 
• Weak thermal anomalies cannot be extracted with 
        simple thresholding; but moving window algorithm 
        presented is suitable 

 

• Sensors Landsat, Aster, and MODIS suitable. Thermal 
MODIS bands allow for multi-diurnal dense observation 
=  optimal thermal monitoring at low cost 

 

• Ratio images of 20/32 à extraction of outstanding 
hotspots 

 

• Automated thermal anomaly extraction = little bias, 
        no manual “thresholding”, and “twisting until it fits” 
 

• Diurnal approach interesting for forest fire activity 
monitoring (changes in energy release), industry 
observation, urban heat pattern analyses, thermal 
pollution along rivers and coasts, observation of 
geothermal phenomena, etc. 
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Further Resources 

EARSEL Special Interest Group: Thermal Remote Sensing 

• Visit: www.itc.nl/sigtrs 
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