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Summary 

• Initial results demonstrate that contrast in 
observed and assumed error correlation leads to 
breakdown in forecast. 

• Increased correlation in observation errors 
suggests to the assimilation scheme that 
observations are not independent 

• For example: three different meteorological 
instruments (x,y,z) in a remote environment 
share a power source (e.g. solar). 
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DA Project 2 

Investigate the effect of correlated 
observation error in the ensemble Kalman 
filter (EnsKF). 
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Default values 

uncorrelated correlated 



Small number of Ensemble Members (5) 

uncorrelated correlated 



High number of Ensemble Members (200) 

uncorrelated correlated 



Small observation error (0.1) 

uncorrelated correlated 



High observation error (10) 

uncorrelated correlated 



Less vs. many observations 

correlated correlated 



Conclusion 
• More ensemble members give a better forecast in case of corr. obs. 

errors (the other way around in the uncorrelated case) 
• If the observation error is high, then the forecast is less confidence 
• More measurements give a better forecast in case of corr. obs. 

errors 
• Background error has a similar impact in both cases, correlated and 

uncorrelated obs. errors. 
 

• Outlook J 
– Influence of changing the magnitude of correlation 
– Influence of changing the starting point 
– Quantitative investigation 
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CASE 0 : 

No correlation in the obs. Errors; 

 

 

 

 

 



 

CASE 1: 

correlation in the obs. Errors is 
100 %  

 

 

 

 



 

CASE 2: 

Random + temporal dependent 
correlation error [ + 3sin(t) ] 

 

 

 

 



 

CASE 3: 

Random + temporal dependent 
correlation error [ + 3sin(t) ] 

Frequency of obs = 5 time-steps 

Obs. Error = 0.01 [very accurate 
obs!!] 

-Worst results!!!  

 



 

CASE 4: more errors in the obs.  

Random + temporal dependent 
correlation error [ + 3sin(t) ] 

Frequency of obs = 1 time-steps 

Obs. Error = 2.0 [noisy obs!!] 

- Best results!!!  

 



 

+sin(i) 



 

+1.5sin(i) 



Extended Kalman filter: 
 

The effect of time correlated observation 
error 

Ksenia, Joachim, Florian, Philipp 



Extended Kalman filter 
• Is used to remove disturbances in 

observations 
• Algorithm to guess the state of linear and 

nonlinear systems.  
• Applications: guidance, navigation, control of 

vehicles, particularly aircraft and spacecraft, 
time series analysis  (meteorolgical 
estimations), oceanography, data 
assimilation and also in signal processing 
and econometrics. 
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GPS measurements 
keeps the  
truck on the road 
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More observations with higher correlation 

(“worse observations”) 

Less observations with lower correlation  

(“better observations”) 

Time correlated observation errors are a major problem! 

It is better to have less but “better” observations! 

No correlation 
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Project 5 
 

Effects of temporal correlation in 
observation errors using 

ensemble Kalman filtering 

 
Jinfeng CHANG 

Erin HESTIR 
Jana KOLASSA 

Paolo VILLA 







Conclusions 

• Temporally correlated observation errors 
improved analysis  
– Observations provided constraints 

• May be useful when forecasting 
discontinuities 



NDVI 



NDVI 



Conclusions 

• Ensemble spread is reduced with high 
temporally correlated observation errors 

• Temporally correlated errors do not 
improve longer forecasting  



Jana Souckova, Jana Slacikova, 
Ruslan Zhuravlev & Cristian Mattar 

Investigate the effect of time 
correlate observation error                       

in 4D-VAR 



Introduction 
• Time Correlated observations are one of the most difficult 
and key variables in forecast modelling and numerical 
wethear prediction models 

• Time Correlated observations are often related to 
Atmospheric profile data assimiliation which can be 
assumed non correlated. 

 

•Error correlation in 4D data base are analyzed in Weston 
(2011, Metoffice Report). 



Method 
• Generate the real state of the simulation by using initial 
parameters 

• Insert a time correlation in the model by using the 
following fixed equations. 

 • Random 

• Fixed Sinusoidal function 

• Fixed Cosin function 

• Fixed in 1.5 

• x=1.5 y= 0.5  z = 1.0 



Results 
• Random 

 



Results 
•Fixed Sinusoidal function 



Results 
•Fixed Cosin function 

 



Results 
•Fixed in 1.5 

 



Results 
•x=1.5 y= 0.5  z = 1. 



Results 
•Sinusoidal function (different Num. obs) 



Results 
•Random (different Num. obs) 



Conclusions and further 
research 

• Based on the simulations, the information about time 
correlation in data assimilation systems could be better than 
non time correlated in some particular cases. 

• However, time correlation could not be easy to apply in 
physical models and in most of cases for 4-D var models. 

• Therefore, time correlated observations errors have to be 
excluded before the data assimilation. 

• Finally, further research have to be carried out in order to 
develop robuts analysis in time correlated observations 
error and random assumptions.   



Project 7: Investigate the effect of 
biased observations in the 

extended Kalman filter. 

Susanne Schnitzer, Alka Singh,  
Christopher Allen, Christopher Straif 



Outline 

• Reference – no bias 
• Introduce a bias that is constant in time 
• Introduce a bias that increases linearly 

over time 
• Increase the observation sampling rate 

 



Reference – no bias 



Introduce a bias that is constant in 
time 

Biased +2 



Introduce a bias that increases 
linearly over time 

Linear biased 
+0.25 for every 
time step 



Increase the observation sampling 
rate 

Linear biased 
+0.25 for every 
time step, 4x 
observations 



Real world example 

• Constant bias – calibration offset 
• Linear bias – environmental degradation 
• Harmonic bias – seasonal effects 

 



Random   Non random 



Project 8: 
An investigation of biased 
observation error on the 
ensemble Kalman filter 

Caroline H. Hardy 
Sabrina Melchionna 
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Flavia Lenti 



Unbiased Observations 



Constant Bias [+5] 



Constant Bias [+5, obs var 0.1] 



Constant Bias [+5, obs var 4] 



Constant Bias [+5, bg var 4] 



Constant Bias in Y only [+5] 



Constant Bias on final obs [+5] 



Time-correlated Sinusoidal Bias 



How do biased observations 
effect 4D VAR DA results 
 using the Lorenz model? 

Project 9 
Richard Pope, UK 
Yang Liu, China 

Niko Wanders, NL 
Hans Roelofsen, NL 



Control Analysis 

Biased Observation Analysis (Obs + 5) 



Errors as a function of bias 

• Introduced bias in observation: 
– Observation = randn() + bias 

 
• Root Mean Square Error: 

– RMSE = f(bias) 
– RMSE = (Σ(analysis – truth)2)/n_tsteps)0.5 

 



Dominant random errors 



RMSE = f(bias) 



Operational 4D VAR DA example 

•  Hypothetical ESA spacecraft docking with 
the ISS using 4D VAR DA. 

• Biased observations- GPS satellite 
instrument iced over so inaccurate 
positioning co-ordinates. 

• So spacecraft analysis path misses ISS 
and ……………………. 
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Topic 10- Extended Kalman filter 

• “ Investigate the performance of the 
extended Kalman filter when the model 
state is only partially observed.” 

• à ‘change the code so that only two 
components of the state vector (x, y, z) are 
observed.’ 

• Thank you Alison Fowler!!! 



Real World 

• For example, 3-D winds where you have x, 
y, and z and your sensor breaks and only 
gives you 2 out of 3 directions. 

• Or 
• For example, 3 separate sensors for chl a, 

chl b and xanthophylls, one stops working 
after sampling 60 of 100 trees.  



Lorenz 63 Model 



Figures-Models 

Remove Z 

Remove X Remove Y 

Normal 



Figures-Errors 

Remove Z 

Remove X Remove Y 

Normal 



Figures – Parameters All 



Conclusions 

• Affect on total model determined by 
relationships of components 
– Removing X less impact than removing Y or Z 

• With a priori knowledge, we can model the 
third component with only 2 

• Expect some decreased model accuracy  



The ensemble Kalman filter: 
partially observation case 

Ruggero Avezzano, Guido 
Ceccherini, Patrick Leinenkugel, 

Tuan Vo Quoc  

11 



Fully 
observed  
i.e. 
observation 
on x,y,z 



Partially 
observed 
i.e. 
observation 
on x,y,z 



Fully 
observed 
increasing 
the number 
of ensambles 



 

Partially 
observed 
increasing 
the number 
of ensambles 



Fully observed 
with low 
background 
error 
covariance 



Partially 
observed with 
low background 
error 
covariance 



Real world 

•Meteorological model with 
3d wind field where wind 
measurements are collected 
only for one elevation 
layer. Estimate wind speed 
also at other elevations.  



Project 12 

Investigate the performance of 4D-Var when the 
model state is only partially observed 

Group members : Alijafar, Javier, Simon, Alireza 



How to investigate ? 
1. Run using all variables 
2. Ignoring one variables  
3. comparing the results 



All variables 

No Z 

No X 



All variables 

No X 

No Z 



All variables 

No X 

No Z 



All variables 

No X 

No Z 
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Investigate different forms of the model error 
covariance matrix, Q, in the extended Kalman filter 

 
Elizabeth Wong, Melina Nikolaidou, Zina Mitraka, Rado Guzinski 



Introduction 
• The covariance matrix Q is the perception of the 

accuracy of the model M.  
• The greater the values in Q, the lower confidence in the 

model.  
 

a) if Q=0 then we fully trust our model.  
b) if Q is identity then we assume that the errors in 

different dimension don’t correlate with each other  
c) we can use Q=a*B when we don’t have a good 

estimation of Q and we can assume that the error in the 
model is directly proportional to the error of the first 
guess.      



Original Q 

     0.1491    0.1505    0.0007 
Q=  0.1505    0.9048    0.0014 
       0.0007    0.0014    0.9180 
 
For Lorenz 63 model  



Original Q Q=0 

Q identity Q=2B 



Frequent, inaccurate observation 

Original Q Q=0 

Q identity Q=2B 



Importance of first guess when the model is fully trusted (Q = 0) 



Conclusions 

• If no model error covariance matrix Q is 
assumed then the initial background has 
to be very accurate  
 
 

• In Lorenz model the error in different 
dimensions is weakly correlated. 
Therefore Q=I works fine 

 



Infrequent, accurate observations 

Original Q Q=0 

Q identity Q=2B 



Project 14 
 

Investigate the effect of model 
error in the extended Kalman 

Filter. 
 

a) random stochastic error 
b) error in the parameters 

c) bias error 
 
 

Olga Zawadzka, Benedita Santos, Antonio Neves, Tomohiro Sato 



Control Without model error 

Q=0 



Control Random error added 



Control Error in model parameters 

Sigma=10 Sigma=2 



Control Bias = 10 



Project 15 

Investigation of the effect of model 
error in the ensemble Kalman 

Filter 



Original results 
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Random stochastic errors 

• Random error introduced in x every 17th timestep. 
• Error appears as increases in ensemble spread.  
• Because we are dealing with the Lorenz model, the modelled values 

converge towards the mean. (spread decreases) 
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X = x + 0.5d0 * (kx1+kx2) * (-10+22.0*rand(1)); 



Parameter error 
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- Parameter error introduced : 10% increase in Rho.   

- Difference between analysis and truth increases significantly.  

- greater effect than the (larger!) stochastic error.  

- Ensemble spread has similar variations than before error introduction.  



Bias error 

- the assimilation ‘corrects’ the bias (as long as the observations are correct).  

- however, the forecast quickly shows large differences with the truth 
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Unbiased analysis 

Biased analysis 



Implications: Model errors in EnKF 

• Even slight errors in parameters or bias 
can lead to significant errors in the 
analysis. 

• Stochastic errors have less influence on 
the overall results 
–  … in the case of the Lorenz model.  



 Investigating the effect of 
model error in 4D -Var 

 

Group 16: Ujjwal Kumar, Chandrakanta Ojha, Xi Xi, Iacob I. Ciprian 

G16 

- ESA SUMMER SCHOOL 2012 -  



Random stochastic 
error 

Change in the parameter σ = 
8 

An additive bias error in x 

Effect on variable x in different scenarios G16 



Default Parameters 

Random stochastic error 

Change in the parameter σ = 
8 

An additive bias error in x 

Error behaviour in different scenarios G16 



Default Parameters 

Random stochastic error 

Change in the parameter σ = 
8 

An additive bias error in 
x 

Convergence of cost function in different scenarios G16 



Conclusion  & Discussions 

 
• In our experiment, 4D-var analysis results 

seem to be the most sensitive to the 
model bias error. 

• Cost function appears to converge faster 
when errors are introduced.  
 

G16 ESA SUMMER SCHOOL 2012 



Data assimilation projects : 
Project 17 

Flore Tocquer 
Elke Ludewig 
Alex Geddes 

Arjen Terwisscha van Scheltinga 

What is an optimal ensemble size ?  

Ensemble Kalman Filter 



Does the solution converge? 
 

Does the error reduce? 
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Does the solution converge? 
 

As you increase the ensemble size the solution converges, a notable 
example is the peak at time 2 
 

Running increasing numbers of members does not further improve 
the solution and increases computation time 

 

Does the error reduce? 
A reduction in error was not observed with increasing ensemble size, 
this could partly be due to the lack of accurate observations and 
background 

 

 



In The Real World 
 

Increasing the ensemble size does not necessarily improving your 
solution, for instance a weather prediction would not be more 
accurate by merely adding more members 

 

However this must be balanced by having sufficient members in 
order for the solution to converge 

 



How is the convergence affected by the 
frequency and accuracy of the observations? 
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How is the convergence affected by the 
frequency and accuracy of the observations? 

 
The error reduces with increasing accuracy of the observations 

 

Having more observations makes the forecast more accurate. 

 

This only in the case where the background error is significantly larger than 
the observation error 
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Project 18 

 What options are there 
  to increase the ensemble spread  
  without increasing the ensemble size ? 
 
Constraint: 5 ensemble members  





Issue 

 In many applications the ensemble size is 
limited. When the ensemble size is small it 
can underestimate the uncertainties in the 
model prediction and not give the 
observation enough weight in the update 
step. 

. . . . . 

. 

. . . 
. . . 
. . . . 



1. Modifying the Q matrix 

Initial Q Initial Q x 5 

Pf(t)=MPf(t-1)MT+Q 



2. Modifying the size of obs perturbations 
Xa = Xb + K*(y – H[Xb] ) 



2. Modifying the size of obs perturbations 
Xa = Xb + K*(y – H[Xb] ) 



3. Modifying obs error and the size of 
perturbation  



Conclusion 
 

To increase the ensemble spread 
without increasing the ensemble size, 
we can “increase” the Q matrix or the 

model observation perturbations. 
In reality, this would save CPU time 

but introduce error. 

Questions ? 


