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Outline 

1. Introduction to data assimilation for NWP 
- Data assimilation process 
- Observations used 
- Forecast impact of observations 

2. Passive atmospheric sounding 
- What do satellite sensors measure? 
- Weighting functions 

3. Retrieval algorithms 
- Forward versus inverse problem 
- Solutions to reduced problems 
- Optimal estimation/1DVAR methods with forecast background 

4. Direct radiance assimilation and 4DVAR 
 

5. Summary 
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How does NWP use 
observations?  

 
 

1.) Introduction to data 
assimilation for NWP  
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Background information 
Observations 

Analysis 
Initial conditions 

for next forecast 
ESA Summer School 2012 

The data assimilation process 
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• The forecast model time evolves fields of geophysical parameters (e.g. 

T/Q/U/V/Ps/O3) following the laws of thermodynamics and chemistry  

 

• The initial conditions used to start the forecast model are provided by 

the analysis 

 

• The analysis is generated from observations relating to the 

geophysical parameters combined with a priori  background information 

(usually a short-range forecast from the previous analysis, also called 

first guess). 

 

•This combination process is known as data assimilation. 

Key elements of an NWP system 

ESA Summer School 2012 
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The Data Assimilation Process 

Observations 
intermittently adjust  
the evolution of the  

forecast model 
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Radiosondes 

 
 
 

SYNOP/SHIP observations 

 
 

Aircraft data 

 
 

BUOYS 
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Example of conventional data coverage 
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LEO Sounders LEO Imagers 

Scatterometers GEO imagers 

Satellite Winds (AMVs) GPS Radio Occultation 

Example of 6-hourly satellite data coverage 

30 March 2012 00 UTC 
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Satellite data used by ECMWF 
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Combined impact of all satellite data 

EUCOS Observing System 
Experiments (OSEs): 
 
• 2007 ECMWF forecasting system, 
• winter & summer season, 
• different baseline systems: 

• no satellite data (NOSAT), 
• NOSAT + AMVs, 
• NOSAT + 1 AMSU-A, 

• general impact of satellites, 
• impact of individual systems, 
• all conventional observations.  
 
 
¬ 500 hPa geopotential height  
 anomaly correlation 

3/4 day 

3 days 
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Satellite data provide robustness to the global numerical forecasts 

ESA Summer School 2012 
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State at 
initial time 

NWP 
model 

State at  
time i 

Observation 
operator 

Observation 
simulations 

Advanced diagnostics 

Observations 

AD of 
forecast 
model 

AD of 
observation  

operator 

Sensitivity of 
cost to change 
in state at time i 

Cost 
function J 

Sensitivity of 
cost to change 
at initial time 

max. 12 hours 

Data assimilation: 

State at 
initial time 

NWP 
model 

State at  
time i 

AD of 
forecast 
model 

max. 48 hours 

Sensitivity of 
cost to change 
at initial time 

Analysis 

Cost 
function J 

Forecast sensitivity: 

State at 
analysis 

time 

Sensitivity of 
cost to 

observations 
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(From C. Cardinali) 

Advanced diagnostics 

The forecast sensitivity 
(Cardinali, 2009, QJRMS, 
135, 239-250) denotes the 
sensitivity of a forecast error 
metric (dry energy norm at 24 
or 48-hour range) to the 
observations. The forecast 
sensitivity is determined by 
the sensitivity of the forecast 
error to the initial state, the 
innovation vector, and the 
Kalman gain. 

Nadir sounders AMSU-A, 
AIRS, and IASI provide 
largest impact  
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How do passive nadir 
sounders measure the 

atmosphere? 
 
 

2.) Passive atmospheric 
sounding 
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They DO NOT measure TEMPERATURE. 
They DO NOT measure HUMIDITY or OZONE. 
They DO NOT measure WIND. 

 

•Satellite instruments measure the radiance L that reaches the top of the 
atmosphere at a given frequency v .  

•The measured radiance is related to geophysical atmospheric variables 
(T,Q,O3, clouds etc…) by the radiative transfer equation. 

 

+ ... 

What do satellite instruments measure? 
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Atmospheric spectrum 

l Depending on the wavelength, the radiation at the top of the 
atmosphere is sensitive to different atmospheric 
constituents 

ESA Summer School 2012 
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Frequency selection 

By selecting radiation at different frequencies or CHANNELS a satellite  
instrument can provide information on a range of geophysical 
variables.   
 
In general, the channels currently used for NWP applications may be 
considered as one of two different types: 
 
• Atmospheric sounding channels 
• Surface sensing channels 
 

In practice real satellite instruments have a combination of both 
atmospheric sounding and surface sensing channels. 

ESA Summer School 2012 
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Atmospheric sounding channels 

ESA Summer School 2012 

These channels are located in parts of the infra-red and microwave spectrum for 
which the main contribution to the measured radiance is described by: 
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That is they avoid frequencies for which surface radiation and cloud 
contributions are important. 
They are primarily used to obtain information about atmospheric temperature 
and humidity. 

AMSUA-channel 5 (53GHz) HIRS-channel 12 (6.7micron) 
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Surface sensing channels 

ESA Summer School 2012 

These are located in window regions of the infra-red and microwave spectrum at 
frequencies where there is very little interaction with the atmosphere and the main 
contribution to the measured radiance is: 

=)(nL Surface emission [ Tsurf , e(u,v) ]  

SSM/I channel 7 (89GHz) HIRS channel 8 (11microns) 

These are primarily used to obtain information on the surface temperature and 
quantities that influence the surface emissivity such as wind (ocean) and 
vegetation (land).  They can also be used to obtain information on clouds/rain 
and cloud movements (to provide wind information) or total-column 
atmospheric quantities. 
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Atmospheric temperature sounding 
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Select sounding channels for which 

with   K(z) =  úû
ù

êë
é

dz
dt

and the primary absorber is a well mixed gas (e.g. oxygen in MW or CO2 in IR). 
 
Then the measured radiance is essentially a weighted average of the 
atmospheric temperature profile:   

dzzKzTBL ò
¥

=
0

)())(,()( nn

The function K(z) that defines this vertical average is known as a 
weighting function. 

ESA Summer School 2012 
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Ideal weighting functions 

K(z) 

z 

If the weighting function was a  
delta-function, this would mean that 
the measured radiance is sensitive 
to the temperature at a single level 
in the atmosphere. 

K(z) 

z 

If the weighting function was a  
box-car function, this would mean 
that the measured radiance was  
sensitive to the mean temperature 
between two atmospheric levels 

ESA Summer School 2012 
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Atmospheric weighting functions 

ESA Summer School 2012 

A lot of radiation is emitted from the  
dense lower atmosphere, but very  
little survives to the top of the  
atmosphere due to absorption. 

At some level there is an 
optimal balance between the  
amount of radiation emitted  
and the amount reaching the  
top of the atmosphere 

High in the atmosphere very  
little radiation is emitted, but  
most will reach the top of the 
atmosphere. 

z 

K(z) 
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• The altitude at which the peak of the weighting 
function occurs depends on the strength of 
absorption for a given channel. 
 

• Channels in parts of the spectrum where the 
absorption is strong (e.g. near the centre of CO2 or 
O2 lines ) peak high in the atmosphere. 
 

• Channels in parts of the spectrum where the 
absorption is weak (e.g. in the wings of CO2 or O2 
lines) peak low in the atmosphere. 

AMSU-A 

Weighting functions continued 

By selecting a number of channels with varying absorption strengths we 
sample the atmospheric temperature at different altitudes.  

ESA Summer School 2012 
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AMSUA 
15 channels 

HIRS 
19 channels 

AIRS 
2378 

IASI 
8461 

More weighting functions 

ESA Summer School 2012 
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AMSU-A: 
• Advanced Microwave Sounding Unit 
• 15 channels (12 in 50-60 GHz region) 
• 48 km field-of-view (nadir), 2074 km swath 
• Primarily temperature-sounding 
• On-board NOAA-15-19, Aqua, METOP-A 
 

Important satellite instruments for NWP 

ESA Summer School 2012 

AIRS: 
• Atmospheric Infrared Sounder 
• 2378 channels covering 650 - 2700 cm-1 (3.7-15.4 μm) 
• 13.5 km field-of-view (nadir), 2130 km swath 
• Primarily temperature/humidity-sounding, trace gases 
• On-board Aqua 

IASI: 
• Infrared Atmospheric Sounding Interferometer  
• 8461 channels covering 645 - 2760 cm-1 (3.6-15.5 μm) 
• 12 km field-of-view (nadir), 2132 km swath 
• Primarily temperature/humidity-sounding, trace gases 
• On-board METOP-A 
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How do we extract 
atmospheric information (e.g. 
temperature) from satellite 

radiances? 
 
 

3.) Retrieval algorithms 

ESA Summer School 2012 
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If we know the entire atmospheric temperature profile 
T(z) then we can compute (uniquely) the radiances a 
sounding instrument would measure using the 
radiative transfer equation.  This is sometimes known 
as the forward problem. 
 
In order to extract or retrieve the atmospheric 
temperature profile from a set of measured radiances 
we must solve what is known as the inverse problem. 
 
Unfortunately as the weighting functions are generally 
broad and we have a finite number of channels, the 
inverse problem is formally ill-posed because an 
infinite number of different temperature profiles could 
give the same measured radiances !!! 
 See paper by Rodgers 1976 Retrieval of atmospheric temperature and composition from remote 
measurements of thermal radiation. Rev. Geophys.Space. Phys. 14, 609-624 

Extracting atmospheric temperature 
from radiance measurements 

ESA Summer School 2012 
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The linear data assimilation schemes used in the past at ECMWF such as 
Optimal Interpolation (OI) were unable to assimilate radiance observations 
directly (as they were nonlinearly related to the analysis variables) and the 
radiances had to be explicitly converted to temperature products before the 
analysis. 
 
This conversion was achieved using a variety of retrieval algorithms that differed 
in the way they used prior information  
 
All retrieval schemes use some (either explicit of implicit) form of prior 
information to supplement the information of the measured radiances and solve 
the inverse problem ! 
 Several different types of retrieval have been used in NWP: 

Examples: 
1.    Regression / Neural Net (statistical) methods 
2.    Forecast background (1DVAR) methods 

Retrieval schemes for NWP 

ESA Summer School 2012 
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1. Regression and Library search met 
hod 
Using a sample of temperature profiles matched (collocated) with a sample of radiance 
observations/simulations, a statistical relationship is derived that predicts e.g. 
atmospheric temperature from the measured radiance. e.g. NESDIS operational 
retrievals or the 3I approach 
 
These tend to be limited by the statistical characteristics of the training sample / profile 
library and will not produce physically important features if they are statistically rare in 
the training sample. Furthermore, their assimilation can destroy sharp physical features 
in the analysis! 
 
2. Forecast Background or 1D-Var Methods  
 
These use an explicit background or first-guess profile from a short range forecast and 
perform optimal adjustments using the measured radiances.  The adjustments minimize 
a cost function. 

ESA Summer School 2012 
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It can be shown that the maximum likelihood approach to solving the inverse 
problem requires the minimization of a cost function J which is a combination 
of two distinct terms: 

])H[(])H[()()()( 11 xyxyxxxxxJ T
b

T
b --+--= -- RB

Fit of the solution to the 
background estimate of the 
atmospheric state weighted 
inversely by the background 
error covariance B. 

Fit of the solution to the measured 
radiances (y) weighted inversely by 
the measurement error covariance 
R (observation error + error in 
observation operator H). 

The solution obtained is optimal*** in that it fits the prior (or background)  
information and measured radiances respecting the uncertainty in both. 

1D state or profile Radiance vector RT equation 

1DVAR retrievals and the cost function 

ESA Summer School 2012 

***If background and observation errors are Gaussian, unbiased, 
uncorrelated with each other; all error covariances are correctly specified;  
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One simple linear form of the 1D-Var solution obtained by minimization of the 
cost function is given by the expression: 

The retrieved profile (xa)  is equal to the background profile (xb) plus a 
correction term applied.  Furthermore we can quantify the error covariance Sa 
of the 1D-Var retrieval which is needed for subsequent assimilation: 

)(][][ 1
b

TT
ba xyxx HRHBHHB -++= -

Correction term, “increment” 

)(][][ 1
b

TT
ba xyxx HRHBHHB -++= -Sa =   B -  HB        

The retrieval being an improvement over the background information 
(assuming all parameters are correctly specified).  

Improvement term 

1DVAR retrievals continued … 
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    HIRS 19 channels 

  IASI 8461 channels 

The magnitude of the improvement over the background clearly depends 
on a number of parameters, but one crucial factor is the number of 
channels and shape of the weighting functions implied by the radiative 
transfer operator H. 

1DVAR retrievals continued… 

ESA Summer School 2012 
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These have a number of advantages that make them more suitable for NWP 
assimilation than other retrieval methods: 
 
•The prior information (short-range forecast) is very accurate (more than 
statistical climatology) which improves retrieval accuracy. 
 

•The prior information contains information about physically important features 
such as fronts, inversions and the tropopause. 
 

•The error covariance of the prior information and resulting retrieval is better 
known (crucial for the subsequent assimilation process). 
 

•The 1DVAR may be considered an intermediate step towards the direct 
assimilation of radiances. 

BUT  the error characteristics of the 1DVAR retrieval may still be very 
complicated due to its correlation with the forecast background … 

Direct radiance assimilation 

Characteristics of 1DVAR retrievals 

ESA Summer School 2012 
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But do we really need explicit 
retrievals for NWP? 

 
 
 

4.) Direct radiance 
assimilation 

ESA Summer School 2012 
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Variational analysis methods such as 3DVAR and 4DVAR allow the direct 
assimilation of radiance observations (without the need for an explicit retrieval 
step).  
 
This is because such methods do NOT require a linear relationship between the 
observed quantity and the analysis variables. 
 
The retrieval is essentially incorporated within the main analysis by finding the 
3D or 4D state of the atmosphere that minimizes  

])H[(])H[()()()( 11 xyxyxxxxxJ T
b

T
b --+--= -- RB

In direct radiance assimilation the forecast background still provides 
the prior information to supplement the radiances, but it is not used 
twice (as would be the case if 1D-Var retrievals were assimilated ). 

Atmospheric 
state vector 

Vector of all 
observed data 

“Observation operator”  
H = radiative transfer equation         

(+ NWP model integration in 4DVAR) 

Direct assimilation of radiances 

ESA Summer School 2012 
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4DVAR data assimilation 

ESA Summer School 2012 
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Background Observation Background departure 

4DVAR  
data assimilation  

ESA Summer School 2012 
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By the direct assimilation of radiances we avoid the problem of 
assimilating retrievals with complicated error structures. 
 
BUT 
 
There are still a number of significant problems that must be handled: 
 

•   Specifying the covariance (B) of background errors. 
 

•   Specifying the covariance (R) of radiance error. 
 

•   Removing biases and ambiguities in the radiances / RT model. 
 

Some of these issues are simplified by the direct assimilation 
of raw (unprocessed) radiance observations.  

Direct assimilation of radiances (II) 

ESA Summer School 2012 
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Further to the move away from retrievals to radiance data, 
most NWP centres are assimilating raw radiances (level-
1b/1c). 
 
• Avoid complicated errors (random and systematic) introduced by 
(unnecessary) pre-processing such as cloud clearing, angle (limb) 
adjustment and surface corrections. 
 

• Avoid having to change (retune) our assimilation system when the data 
provider changes the pre-processing 
 

• Faster access to data from new platforms  (e.g. new data can be 
assimilated weeks after launch) 
 

• Allows consistent treatment of historical data for re-analysis projects 
(ERA-40, ERA-interim) and other climate studies 
 

Direct assimilation of raw radiances 

ESA Summer School 2012 
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Advantages of 4DVAR (or various flavours of it) 

l Better use is made of observations far from the centre of 
the assimilation time window (particularly important for 
satellite data). 
l The inversion of radiances is constrained by the 

background and its error covariance, but also by the 
forecast model’s physics and dynamics. 
lWind information can be retrieved from radiance data 

through tracing effects:  
- To fit the time and spatial evolution of humidity or ozone signals 

in the radiance data, the 4DVAR has the choice of creating 
constituents locally or advecting constituents from other areas. 
The latter is achieved with wind adjustments. 

ESA Summer School 2012 
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Wind adjustments from radiances in 
4DVAR 

Mean Analysis Difference 

MET7-WV  – CONTROL 

• Assimilation of passive tracer information feeds back on wind field  in a 
single analysis cycle. Small adjustments also visible in mean wind field. 

Mean Analysis 

(CONTROL) 

200 hPa 

ESA Summer School 2012 
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Summary of key concepts 

l Satellite data are extremely important in NWP. 
l Data assimilation combines observations and a priori 

information in an optimal way and is analogous to the retrieval 
inverse problem. 

l Passive nadir sounders have the largest impact on NWP 
forecast skill: 

- Nadir sounders measure radiance (not T,Q or wind). 
- Sounding radiances are broad vertical averages of the temperature 

profile  (defined by the weighting functions). 
- The retrieval of atmospheric temperature from the radiances is ill-

posed and all retrieval algorithms use some sort of prior information. 
- Most NWP centres assimilate raw radiances directly due to their 

simpler error characteristics. 4DVAR is now widely used (or alternative 
4 dimensional techniques). 
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