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Classification Approaches 

§ Classification: grouping of elements according to 
common properties 

© Lillesand 1978 
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Urban Mapping: Manila, Philippines, 1975 - 2010 

 
 
 
 
 
 
 
 
 
 
 

Landsat MSS     Landsat TM             TerraSAR-X 
© DLR 
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Land Use Change: 
Southeast Asia, Indonesia, Sumatra 

© WWF, Uryu et a. 2007 

 
 
 
 
 
 
 
 
 
 
 
 

§ Land use change from 1982 until 2005 in Sumatra, Indonesia 
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Vegetation Differentiation: Global Land Cover 

© JRC 

 
 

 
 

 
 
 
 
 

§ GLC 2000 
§ 1 km resolution 
§ SPOT 5 VGT 
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Post classification change detection on the basis of MOD12Q1 land 
cover product   
 

MODIS Land Cover Product Reliability 

Slide courtesy of P. Leinenkugel 
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Stable Pixels 2001-2009 
Land Cover Type Per Cent Land Cover Type Per Cent 
Urban and built-up  98% Evergreen Needleleaf forest  22% 
Evergreen Broadleaf forest  80% Mixed forest  17% 
Water  64% Closed shrublands  12% 
Grasslands  63% Barren or sparsely vegetated  2% 
Woody savannas  38% Open shrublands  1% 
Cropland/Natural vegetation mosaic  34% Deciduous Needleleaf forest  0% 
Permanent wetlands  33% Deciduous Broadleaf forest  0% 
Snow and ice  24% Savannas  0% 
Croplands  23% 

MODIS Land Cover Product Reliability 

Slide courtesy of P. Leinenkugel 
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Comparison of Global Landcover Products 

Slide courtesy of U. Gessner 
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Comparison of Global Landcover Products 
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MODIS Cloud Mask Comparison 

Slide 10 

MOD09 Cloud Flags MOD35 Cloud Flags RGB image 

Slide courtesy of P. Leinenkugel 
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The Vegetation Model BETHY/DLR 

Land Cover, GLC2000 (1 km) 
Precipitation ECMWF (0.25°) 

Temperature, ECMWF (0.25°) 
PAR, ECMWF (0.25°) 

LAI, SPOT (1 km) 

Wind Speed, ECMWF (0.25°) 

Input Data 

Model Output: 
- Gross- and Net- Primary-Productivity 
 Maintainance Respiration 

à NPP = GPP - MR 

Photosynthetic Reactions 
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University of California Museum of Paleontology's Understanding Evolution 
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My first Classifications, Xinjiang, China (2000) 
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1D-Classification (e.g. LST Intervals) 

H gneu 

g g 

Histogram of the data set Grey value transfer function 

(Class code) 

O1 O2 O3 
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Classification Approaches 

 
 
 
 
 
 
 
 
 
 
 

§ position of two pixel clouds in a two dimensional feature space 
© ERDAS 1997 
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Spectral Seperability 
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§ Illustrates the distribution of signatures 
§ Shows possible confusion in signatures 

Overlap 

Signature Analysis of the Histogram 



20 

Supervised/ unsupervised classification 

§ Supervised: interactive 
§ The supervised classification is based on utilising known training 

areas for classification  
§ The user defines training areas for each class in the satellite 

image and the classification algorithm searches for further pixels 
with similar properties (statistical analysis of the entire scene) 

§ The spectral properties of each class are derived from the 
regional mean values of the training areas and the respective 
covariance 

§ Result: homogeneous classes with explicit labels 
§ E.g. box -, parallelepiped -, minimum distance -,  spectral angle 

mapper -, maximum likelihood - classification 
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Supervised/ unsupervised classification 

§ Characteristic properties of the class Oi are 
- Mean value 

 
 

 
 
k ... Band index 
N ... Number of pixel in the training area 
i ... Class index 
 

- Standard deviation (for individual bands) or variance-covariance function 
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Supervised/ unsupervised classification 

 

© Lillesand 1978 
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Supervised/ unsupervised classification 

§ Unsupervised: without user interaction 
§ Purely mathematical, statistical analysis of spectral bands  
§ Cluster analysis for the determination of discriminable classes in 

a defined n-dimensional feature space (n = number of bands) 
§ Purely mathematical approach; no semantics, meaning of the 

features has no relevance 
§ Algorithm groups image pixels into clusters (grouping is based 

on statistical properties)  
§ Result: homogenous classes without any thematic connotation 
§ The thematic meaning of each cluster has to be assigned by the 

user in a further step (class assignment) 
§ e.g. isodata algorithm, k-means algorithm 
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Supervised/ unsupervised classification 

Unsupervised classification Supervised classification 

Computational intensive, adequate for quick 
‘snapshot‘: which classes are spectrally well 
discriminable? 

Computational less intensive 

Previous knowledge not required (but desirable!) Knowledge on study area should exist 
(ground truth, GPS) 

Definition of number of classes is critical: 
If to high – classes not discriminable, if to low – 
unnecessary merging of classes 

Selection of training areas critical: 
risk of being not representative, not enough, 
extreme overlap of classes in the feature 
space 

Results are objective  
(class assignment subjective!) 

Results depend on selected training areas 
selected by the user 

Applicable to arbitrary data sets; however, class 
assignment individually for each data set! 

For each new EO-data: possibly new training 
sites necessary (illumination- and 
atmospheric conditions, land cover 
dynamics…) 

‚New‘, unknown classes in the study area can be 
identified 

Only already defined classes (based on 
training sites) can be identified 

Accuracy often insufficient Approved method 

Both approaches can be performed with prevalent remote sensing software packages 
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§ Iterative algorithm 
§ Divides pixels successively into subpopulations (clusters) 
§ Iterative grouping into clusters is determined according to 

spectral distance to the clusters’ mean value 
§ Each pixel is iteratively assigned to the class with the 

shortest spectral distance to the class centre point  
§ Input parameters by the user: number of clusters, number 

of iterations, termination condition 

Unsupervised classification: isodata (I) 
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2. Minimum Distance calculations: Each 
pixel is associated with closest mean 

Band 1 
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Cluster Means 
1. Means are initialized along diagonal 

3. New mean calculated for each cluster 
and means migrate to new locations 

1 

2 

4. Iterations continue until convergence 
or maximum iterations is reached 

Unsupervised classification: isodata (II) 

The ISODATA algorithm uses the minimum spectral distance formula to 
form clusters.  After the initial clusters are formed the process repeats 
itself, locating new means.  These new means are then used in the next 
iteration, and the next until either the maximum number of iterations has 
been performed OR the maximum percentage of unchanged pixel 
assignments has been reached. 
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Unsupervised Classification 

Disadvantage 
§ Computational intensive 
§ Accuracy often insufficient 

 
Advantage 
§ adequate for quick ‘snapshot‘: which classes are spectrally well 
discriminable? 
§ ‚New‘, unknown classes in the study area can be identified 
§ Previous knowledge not required 
§ Results objective, only spectral properties are assessed 
§ Standard method, implemented in all remote sensing software 
packages 
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Supervised  Classification 

§ User defines several training 
sites (TS) for each class 
 

§ The more heterogeneous the 
class, the more TS required 
 

§ TS should be as homogenous as 
possible 
 

§ Selection of TS should be evenly 
distributed over the entire image 
 

§ TS also usable as cluster centres 
 

§ Numerous ‚supervised ‘  
classification algorithms e.g. 
MinDist, MaxLikeli,… 
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Supervised: Parallel Piped classification (I) 

§ Determination of 
multidimensional ‘boxes’ 
around the class centre 
points (in consideration of 
the standard deviation) 

§ Uses Euclidian distance 
§ Considers statistics 

(calculation of standard 
deviation for each band) 

© Lillesand 1978 
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Supervised: Parallel Piped Classification (II) 

© ERDAS 1997 

§ Distinctive feature: 
- Box surrounding mean 

value with extent of h-fold 
standard deviation 

§ Consideration of variance 
§ May generate overlapping 

classes in the feature space 
§ Class membership of each 

pixel is assessed 
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Supervised: Parallel Piped classifikation (IV) 

§ ‚Parallel piped‘  
classification of  
Cairo based on  

     Landsat TM  
  
§ Pseudo colour TM 

7, 5, 2 und 4, 2, 1  
 
 

© ESA 
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§ Minimum distance to mean values 
§ Class representation: 

- Mean -Vector: 
§ Class assignment 

- Each pixel is assigned to the class with the minimum distance to 
the class’ mean value in the feature space 

§ Discriminator 
- in 2D-space: perpendicular bisector 
- in nD-space: Hyper-plane 

 

Supervised: Minimum distance classification (I) 
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Supervised: Minimum distance classification (II) 

§ Calculation of Euclidian 
distance between pixel 
U and centre points Oi: 
 

 
 
 
 
 

§ Advantage 
- Easy calculation 
- In order to avoid 

misinterpretations: 
small assignment radii  

§ Disadvantage 
- Inadequate statistical 

rationale 
- Does not account for 

range of dispersion 
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Supervised: Minimum distance classification (II) 
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Supervised: Minimum distance classification (III) 

§ Example for 
„unjustified“ assignment 

- Class 1: homogeneous 
(e.g. water surface) 

- Class 2: heterogeneous 
class (e.g. settlement) 

- Pixel close to the 
perpendicular bisector 
may be assigned to the 
homogenous class, 
although membership 
to the inhomogeneous 
class is more probable  

g1 

g2 O1 

O2 
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angle 

§ The SAM-Method is based on the 
estimation of the spectral similarity 
in the (n-dimensional) feature space 

§ Signature is described by a vector, 
starting at the coordinate system’s 
origin 

§ Length of the vector resembles 
reflection intensity 

§ Difference between spectra is 
described by the angle 

§ By assessing the angle difference 
between pixel and reference 
spectrum an image can be divided in 
any number of classes 

Pixel 

Supervised: Spectral  Angle Mapper (SAM) (I) 

Reference-
spectrum 

Band a 

B
an

d 
b 
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§ Calculation of angle α is based on trigonometric function of 
the arc cosine, for which for all bands nb, all angles between 
the sum of all target pixels t, and all reference pixels r is 
calculated 
 
 
 
 
 

§ A pixel is assigned to the class whose spectrum has the 
smallest angle with the respective pixel 

§ Size of the angle in radiant 
§ Angle is assessed, not the length of the vector! 

 

Supervised: Spectral  Angle Mapper (SAM) (II) 

α = spectral angle between vectors 
nb = number of spectral bands 
t = target pixel 
r = reference pixel 
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Supervised: Spectral Angle Mapper (SAM) (III) 

§ Advantage 
- Fast and easy approach 
- Comprehensible for the user 
- Relative robust against 

Illumination differences  
(topography, light source, 

      sensor, etc.) 
- Comparability of image  
      spectra with lab spectra 

§ Disadvantage 
- Illumination tolerance is accompanied by insensitivity for detecting 

certain physiologic changes 
- Similar spectra, which only significantly differ in their albedo (e.g. 

needle leaf and broad leaf forests),  are wrongly classified 
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Class A 

Class B 

Vector of endmember 
spectrum for class A 

Vector of endmember 
spectrum for class B 
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Statistical Basics 
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Statistical Basics - Probability Density 
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Supervised: Maximum Likelihood  Classification (I) 

§ Is based on k-dimensional normal distribution 
§ Class membership is based on highest probability 

density 
§ Discriminator: 

- Isolines with equal probability density between the 
respective classes 

Example: 1D case 
 
(shaded: wrongly classified areas) 
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§ Probability density function calculated on the basis of mean vector and 
covariance matrix 
§ Vertical axis: probability of class membership 
§ Each spectral class has a probability density function (bell shaped) of class 

membership 

© Lillesand 1994 

Supervised: Maximum Likelihood classification (III) 
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Supervised: Parallel Piped classification (IV) 

§ Maximum Likelihood 
Classification of 
Cairo City 
based on Landsat TM  
 
 

§ Pseudo colour TM 
7, 5, 2 und 4, 2, 1  
 
 

© ESA 
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§ Support Vector Machines (SVM) 
§ Large margin classifier 
§ Groups a population within an d-dimensional feature space in 

classes so that the margin between the classes is maximised  
 

§ Starting position 
- n training data (x1 y1), (x2 y2), ..., (xn yn) 

- with xi є Rg  
- and yi є {-1, +1} (i=1,2,...N) 

 
§ Geometrical approach 

- Group samples in the feature space into two classes using a hyperplane 

Supervised: Support Vector Machines (I)  

© ESA 
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Supervised: Support Vector Machines (II)  

§ Optimisation problem:  Maximising distance between classes 
and hyper plane 

 
 
 
 
 
 
 

© Moutrakis et al. 2011 
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Supervised: Support Vector Machines (III)  

§ Also in n-dimensional feature space applicable 
§ Also for non-linear discriminable classes applicable 

© imtech.res.in 
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Supervised: Support Vector Machines (IV)  

§ Popularity of  SVMs in remote sensing analyses within the last 
decade 

© Moutrakis et al. 2011 
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Supervised: Support Vector Machines (V)  

Disadvantage 
§ New training data required for each input data set (even after e.g. 
   atmospheric correction differences in class variance 
§ Non-linear discriminable data require additional computing time 
 
Advantage 
§ Little computational costs  (based only on a few support vectors) 
§ Good generalisation (performs well for heterogonous classes) 
§ Good results with only a small number of training data 
§ works well also with high number of dimensions 
   (multi/hyperspectral) 
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Supervise Classification: Decision Trees (I)  

 
 
 
 
 
 
 
 

§ Many global land cover classifications 
§ Friedl & Brodley, Hansen et al., Cihlar et al., Wen & Tateishi, …  
§ Well suited for differentiation of vegetation types 
§ Often used for local surface extraction (cloud, snow, ice …) 
§ Terms: Root, Branches, Nodes, Leaf  
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Disadvantage 
§ A-priori knowledge required 
§ Construction of tree is labour- and time-intensive 
§ Decision rules are only transferable with limitations 
   (variation in time and space) 
Advantage 
§ Quite flexible and versatile applicable 
§ Standardised and comparable results 
§ Only little additional efforts once the decision tree is constructed 
§ very focused with respect to band and feature selection  
§ decisions are based on physical properties 
§ extendable and transferable (with certain efforts for adaptation) 
§ Only little previous knowledge required to apply existing tree 
§ reasonable for large areas 
§ Implemented in all commercial remote sensing software packages 

Supervised: Decision trees (III)  
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Fields of application 
§ High resolution data (Airborne, IKONOS, QuickBird, ETM+, ASTER) 
§ Complex land use classes (Urban areas, commercial areas, road 

networks,…especially images with ‘structures’) 
§ Detailed land use and vegetation classification 
§ Software: eCognition (Definiens Developer) 

 
 

Satellite Image           object–oriented result     pixel based result 

Supervised: Object-oriented classification (I) 
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Supervised: Object-oriented classification (II) 

Segments 

Data Segmentation Object DB 

IKONOS 08/2001 
© Mott, TU München 2003 
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§ Segmentation: the scale-parameter 

© Mott, 2005 

Supervised: Object-oriented classification (III) 

“scale” parameter increases: generalisation increases 

“scale” parameter decreases: level of detail increases 



60 

 
Object 

Grey level 

Form 

Context 

Texture 

IKONOS 08/2001 © Mott, TU München 2003 

Supervised: Object-oriented classification (IV) 
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Object 

Grey level 

Form 

Context 

Texture 

Additional Information 

DEM © Mott, TU München 2003 

Supervised: Object-oriented classification (IV) 
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Object 

Grey level 

Form 

Context 

… 

Texture 

Additional Information 

IKONOS 08/2001 © Mott, TU München 2003 

Supervised: Object-oriented Classification (IV) 
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§ Construction of a semantic network 
§ Objects of various scale levels are interconnected 

© Mott, 2005 

Ebene 2

Ebene 1

Ebene 2

Ebene 1

Supervised: Object-oriented classification (V) 

Level 2 

Level 1 

“Bottom up region merging technique” starts on the 1-pixel-object level. The 
objects that are created on different scales are connected by a hierarchical 
network. 
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Supervised: Object-oriented classification (VI) 

§ Object features 
 
 
 
 
 
 
 
 
 
 
 

§ (A)original image IKONOS 8/2001, (B) mean,  
(C) standard deviation, (D) ‚compactness‘  

 

© Mott, 2005 
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§ Construction of class descriptions via fuzzy-membership curves 
for significant object features 

© Mott, 2005 

Supervised: Object-oriented classification (VII) 

Y = Degree of fuzzy-membership 

“crisp” “fuzzy”       “crisp”      “fuzzy”    “crisp”
    

X = object value 
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Area wide classification 
 
 
 

 

 

Ñ Distinctive land cover classes 
in ArcView-Shape format 

Ñ Classification by NSG/FFH 

Broad-leaved forest 
Needle-leaved forest 

LW - meadow 

LW – grass land typ 1 

Settlement/ impervious surface 

LW - maize 

wetland 

Water surface 

LW – grass land typ 2 

IKONOS 08/2001 

Supervised: Object-oriented classification (VII) 
Example Osterseen 

0 500 1.000250 Meters
N 
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Supervised: Object-oriented classification (VII) 
Example Osterseen 

FFH - Gebiet Südliche Osterseen- prozentuale Anteile, Gesamtfläche 407ha

Baumbestand - Laub
20%

Gewässer
44%

Versiegelte Fläche / Siedlung
1%

Baumbestand - Nadel 
12%

LW - Grünland 
7% LW - gemähte Streuwiese / 

Rohboden
2%

Feuchtgebiete - Schilf/ 
Seggenried/ Moor

14%

Feuchtgebiete - Schilf/ Seggenried/ Moor

LW - gemähte Streuwiese / Rohboden

LW - Grünland 

Baumbestand - Nadel 

Baumbestand - Laub

Versiegelte Fläche / Siedlung

Gewässer

IKONOS 08/2001 © Mott, TU München 2004 

§ Quantitative statements possible 

Broad-leaved forest 
Needle-leaved forest 

LW - meadow 

LW – grass land typ 1 

Settlement/ impervious surface 

LW - maize 

wetland 

Water surface 

LW – grass land typ 2 

FFH area of southern Osterseen, proportion land cover in percent, total area 407ha 
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Supervised Classification: Object-oriented 
classification (VIII) 

  

ÑLandscape elements  
      can be detected  
      automatically 

Single trees 

0 250 500125 Meter± 

ÑRelationships between 
adjacent objects! 
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Broad-leaved forest 
Needle-leaved forest 

LW - meadow 

LW – grass land typ 1 

Settlement/ impervious surface 

LW - maize 

wetland 

Water surface 

LW – grass land typ 2 
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pixels: 10m resolution 

Supervised Classification: object-oriented classification (IX) 
Example Mekong Delta 
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pixels: 3m resolution 

Supervised Classification: object-oriented classification (IX) 
Example Mekong Delta 
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pixels: 3m resolution 

Supervised Classification: object-oriented classification (IX) 
Example Mekong Delta 
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pixels: 3m resolution 

Supervised Classification: object-based classification (IX) 
Example Mekong Delta 
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Supervised Classification: object-oriented classification (IX) 
Example Mekong Delta 
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Supervised Classification: object-oriented classification (IX) 
Example Mekong Delta 
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Disadvantages 
- Only few, relatively expensive(!) software solutions (dongle) 
- Iterative, very(!) time consuming process 
- Quality highly dependent on competence of user 
- Rule set often only partly transferable 
- Ok for smaller areas, but not so much for mass data throughput 

Advantages 
- Very high accuracies can be obtained 
- Direct post-processing in GIS 
- Fuzzy logic rationale applicable 
- Additional object features (beside spectral information) can be used for 

classification 
- Very useful if spectral variance within a class is higher then spectral 

variance between classes (e.g. urban) 

Supervised: Object-oriented classification (IX) 
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New Paradigms in Remote Sensing 

How much is too much??? 
 
 
 
 
 
 
 
 
Do you really want to see every single car? 
Too much information also creates confusion. 
300 channels are usually not more useful than 150. The same 
might apply for spatial resolution: at one point its all too much. 
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Validation 

There are 2 essential questions you need to ask for each 
classification: 
 

1. How accurate is the classification? 
 

2. How was the accuracy recorded? 
 
 

If these questions are not answered adequately, then 
there is reasonable doubt … 
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Validation: Indirect validation – reference data with a higher 
resolution  

§ Different users have different demands for accuracy 
assessment 

§ Proper registration of the data 
§ Errors in the basis for comparison are propagated 
§ Reference maps 

- Often not up to date 
- Accuracy unknown 
- Different classification scheme 

§ Field campaign 
- Time of recording? 
- Expensive 
- Field data is also a type of classification 

§ Data with higher resolution 
- Time of recording ? 
- Are the classes clearly detectable? 
- Spectral resolution (Landsat 7 bands – IKONOS 4 bands) 
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Validation: Ground Control Points - GCPs 

§ GCPs are control points or sample points 
- GPS points, which classes were collected in a field survey 
- Sample points, which are chosen on the record of this data 

set or another data set (larger scale: aerial photography, 
high resolution data) 

- Selection of sample points in the image and subsequent 
field survey (if possible) = ground truthing 

§ For each control point the „true“ class is determined 
§ Accuracy assessment means: 

Comparison of the classification with the assigned „true“ class 
§ Results will be shown and analysed in a confusion matrix 
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Agreement 

Reference map 
Classification 

Validation: User and Producer Accuracy 
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Area𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

AreaClassification
 

Classification 

Validation: User Accuracy 

Agreement 
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AreaAgreement

AreaReference map
 

 

Agreement 

Validation: Producer Accuracy 

Reference map 
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E.g.: Class „Forest“ 
 
Producer Accuracy: 91 %   User Accuracy: 84 % 

 
 
 
 

Classification 
„Forest“ 

Classification 
„Forest“ 

Mapped 
„Forest“ 

Mapped 
„Forest“ 

Mapped 
„Water“ 

How many % of the 
training area were 
correctly classified 

? 

Mapped „Pasture“ 

Probability, that a pixel, assigned to this 
class, really belongs to that class 
 

Validation / Classification Accuracy: Producer vs. 
User Accuracy 
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Validation: Confusion Matrix 

Referenzkl. Klassifizierungergebnis 
Klasse 1 Klasse 2 ... Klasse k TOTAL 

Klasse 1      
Klasse 2      

...      
Klasse k      
TOTAL      

 

Referenzkl. Klassifizierungergebnis 
Wald Stadt Wiese Industrie TOTAL 

Wald 179 5 10 3 209 
Stadt 9 203 57 12 281 
Wiese 13 25 176 2 216 

Industrie 0 0 0 28 28 
TOTAL 201 233 243 45 722 

 

Comparison of the target classes to the actual classes 
The reference pixel in the matrix 

Beispiel: 
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class Producer Accuracy (%) User Accuracy (%)
agrar sparse 52.94 93.26
agrar medium 91.08 84.05
agrar dense 96.26 93.26
calcite 76.14 100.00
coal pure 97.56 98.30
coal related 95.70 31.45
desert vegetation sparse 95.45 90.57
desert vegetation medium 81.79 83.75
desert vegetation dense 80.10 70.83
lake deep 87.20 86.51
lake shallow 81.60 100.00
limestone dark 98.61 97.82
limestone light 88.72 61.35
metamorph dark 74.81 94.84
metamorph light 68.97 100.00
mountain vegetation sparse 78.27 88.73
mountain vegetation dense 88.64 52.00
river deep 97.65 82.82
river shallow 80.81 96.85
sand crusted 92.45 24.50
sand dune 86.81 98.14
sand pure 98.65 95.38
sandstone 71.61 100.00
settlement 88.27 100.00
weathered coarse 95.09 85.05
weathered medium 100.00 56.04
shadow 91.92 88.55

Overall Classification Accuracy : 89.41%

Ground truth polygon that have been mapped during a field campaign 

Validation: also ‚Accuracy Assessment‘ 
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§ Aerial photographs or higher-resolution data are considered as 
a good basis for comparison (Congalton, 1991) 

§ Assumption: Interpretation of the higher-resolution data is 
100% correct (applies not always) 

§ There are also existing land use maps for reference.  
Note: These maps are often not up to date and their accuracy is 
not well known 

Validation: Indirect validation – reference data with a 
higher resolution  
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Validation: Exclusion of homogeneous classes 

§ In order to prevent the „distortion“ of the quality measure 
certain homogeneous or uninteresting classes are usually 
excluded from the validation 

§ Depending on the problem, e.g. 
- Large bodies of water 
- Clouds and cloud shadows 
- Snow 
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Validation: Principles of sample design 

Class definition 
§ Reference data should be collected under the same assumptions 

and in the same class scheme (same classes and decision 
criteria), as the classification to be tested 

Adequate spatial resolution –  
§ Reference data should be collected in the same scale level 

(same MMU). The sample unit (e.g. pixels, pixel clusters, 
polygons) specifies the level of detail.  

Sample number   
§ At least ~ 50 Sample per class it should be. When dealing with a 

very large study area (> 400,000 ha) or many classes (> 12) the 
sample number should be increased. (e.g. 75 – 100 per class). 
The sample number is to be adjusted, dependent on the 
importance of the class und the class-specific variability in the 
feature space.  
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Sampling plan  
§ A stratified, randomly distributed sampling plan for each class is 

to be made. This ensures that all classes are examined.  
§ The organization of a field campaign is to be conducted 

according to the classification. 
§ When ground truth data are collected at the beginning of a 

project it is recommended to distribute the samples randomly. 
Important is the logical distinction between training and 
reference areas.   

 
Summarized from Congalton and Green 1999 

Validation: Principles of sample design 
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Spectral Unmixing (I) 

§ Also known as 
- Spectral Mixture Analysis 
- Sub Pixel Classification 

§ Idea: 
- The majority of the pixels measure the reflectance of more 

than one „pure“ object class („mixed pixels”) 
- Multispectral data of one pixel include – depending on the 

area fraction – a weighted average of the reflectance's of the 
participating object classes 

- The task of the „unmixing“ is to determine the area fraction 
of each pixel 

- The sub-pixel classification does not determine the sub-pixel 
location of the classes, but only the portion 
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Spectral Unmixing (II) - mostly for hyper spectral data 

© DLR © DLR 
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Spectral unmixing (III) 

Mixed Spectra Example

0
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4000
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12000

14000

0,4 0,9 1,4 1,9 2,4

Wavelength (microns)

D
ig
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l C

ou
nt

Parking Lot

Vegetation

1:1 Mixture

§ Pixel spectrum is rarely ‚pure‘ 

§ E. g. mixed pixels from two or more object classes (50:50 mixture of „parking“ and 
„vegetation“  - edge pixels of a parking lot) 

§ Classes to be segregates are so-called “endmembers” 

© DLR 
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Spectral Unmixing (IV) 

§ Example 

PUR PUR 

PUR MIX 

1.0 

1.0 

0.0 

0.5 

1.0 0.0 

0.0 0.5 

Red 
Fraction 
Image 

Green 
Fraction 
Image As a result of the unmixing process 

of the multispectral input image a so-
called fraction-(endmember)-image 
is produced. The number of spectral 
bands of the new image are 
corresponding to a maximum of those 
of the original. 
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Spectral Unmixing (V) 

100% 

0% 
N 

© Fisher 1997 

© Künzer 2005 

©
 K

ün
ze

r 2
00

5 

Result of unmixing of Landsat TM in area of 
Wudan, China. Brightness: ‘coal’-share 
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Spectral Unmixing (VI) 

§ Theory of linear unmixing: 
 
 
 
 

- gi,e known grey values of the e-th endmember in the i-th band 
- g‘i Grey value of a pixel in the i-th band 
- fe Fraction components (=unknown), noise! 
- Ei Error term (=improvement in the sense of adjustment) 

 
ð It can not be determined more fraction components than error 
equations can be set up, i.e. not more than bands than are available in 
the original image. 

kifgg i

N

e
eeii ,1'

1
, =+= å

=

e k=number of 
bands 
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Spectral Unmixing (VII) 

§ First step: 
- Search for „pure“ endmembers in the original image (i.e. spectrally distinct 

classes that do not consist of mixed pixels) 
- Extracting the spectral features of these endmembers 
- Pixel Purity Index Calculations (PPI) 
 

§ Second step: 
- Setting up a system of equations 
- Solved by the method of least squares 
 

§ Third step: 
- The found endmember components are sequentially multiplied by all pixels 
- Result: fraction images in relation to the selected endmembers 
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Spectral Unmixing (VIII) 

4 Endmember 
 
A: Coal 
 
B: Desert sand 
 
C: Arkose  
    Sandstone 
 
D: Vegetation 

© DLR 

©
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Field measurements  
with a spectroscope 

Laboratory spectra 

Pre-processing of the spectra 
Corrected spectra 

LS-5 

LS-7 

Aster 

Hyperion 

Spectral Unmixing (IX) – Endmember search 

© DLR 
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Advantages: 
- Physical method of this method 
- Objective method without subjective influence of the producer 
- Quantitative results on sub-pixel basis 
- Also detected objects that are not perceived visually 
- Especially suitable for chemical, geological and mineralogical 

investigations 
- Not only for hyper spectral data 

 
Disadvantages: 

- Pre-processing of the images and spectra is very complex 
- Can be performed only by experts 
- Difficult in topographically heterogeneous areas (DTM Quality!) 
- Minimum number of recording channels is required! 
- Software packages with programming interface are needed               

(e.g. ENVI(IDL, C)) 
 
 
 

Spectral Unmixing (X) 
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Spectral Feature Fitting (SFF) (I) 

§ Aim 
- Comparison of the pixel spectrum with a reference spectrum 

§ Method 
- Based on ‚least squares – best-fit‘ approach: 

‚The better the fit, the smaller the sum of the squared distances between the two 
spectra compared‘ 

- The measure for this is the Root Mean Square Error (RMS) 
- It will be generated a corresponding RMS-image 
- The RMS-image shows which are similar to the selected endmember spectrum 
- Or comparison of the input data set with the complete spectra database O 
- The comparison of the spectra is only useful if the “Continuum” has been 

removed. 
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Spectral Feature Fitting (SFF) (II) 

§ A “continuum” for each input spectrum is defined (local maxima are 
determined and connected linearly) 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

© Kruse 1999 
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Spectral Feature Fitting (SFF) (III) 

§ Minima of the corrected spectrum are determined 
 
 
 
 
 
 
 
 
 

The 10 strongest absorption regions per spectrum are determined 
 

© Kruse 1999 
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Spectral Feature Fitting (SFF) (IV) 

§ Wavelength, position, depth, width at half maximum depth 
(full width at half the maximum depth (FWHM)) and asymmetry 
for all 10 distinct absorption regions are determined and listed 
in a table 

§ Comparison with reference spectrum 
 

© Kruse 1999 
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Spectral Feature Fitting (SFF) (VI) 

Advantages: 
- Has proven particularly useful in geology 
- Effective in the search of “known” objects/materials 
- Useful method for the incorporation of the spectral databases and 

spectrometer measurements in the study 
- Physical background of the method 
- Objective method without subjective influence of the producer 
- Not only for hyper spectral data 

 
Disadvantages: 

- Very laborious and time consuming (PhD thesis?) 
- Pre-processing of the images and spectra is very complex 
- Can be performed only by experts 
- Difficult in topographically heterogeneous areas (DTM Quality!) 
- Minimum number of recording channels is required!  
- Software packages with programming interface are needed  
      (e.g. ENVI(IDL, C)) 
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Automated tool TWOPAC 

TWOPAC – Twinned object and pixel-based automated classification chain 
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l 

§ Standardized interface for process control 
– OGC Web Processing Services (WPS) – 
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Input Data 
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Input Data (‘Stack’ Generation) 

§ MODIS (NIR, RED, NDVI, 250m) 
       Annual time series, calculation of mean, 

standard deviation, maximum, minimum, 
amplitude 

 
§ Rather mean values with guaranteed stability 

than single values (transfer and comparability) 
 
 

winter-spring 

autumn-winter 

full year 

summer 

Correlation 
matrix between 
variables, layer 
with too high 
correlation 
indices to be 
eliminated 
(e.g. NDVI full 
year max. and 
NDVI summer 
max.)  
Layer Stack: > 50 
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§ MODIS (NIR, RED, NDVI, 250m) 
 § SRTM (height, slope, exposition, 250m) 
 

Input Data (‘Stack’ Generation) 
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Definition of the Classification Scheme 

 
§ Based on the standards of the 

Land Cover Classification 
System (LCCS) 
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Primarily Vegetated Area(s) Primarily Non-Vegetated Area(s) 

Terrestrial Terrestrial Aquatic or Regularly 
Flooded 

Aquatic or Regularly 
Flooded 

(Semi-) Natural 
Aquatic or  
Regularly 
Flooded 

Vegetation 

Artificial 
Surfaces & 
 Associated 

Areas 

Unconsolidated 
materials 

Unconsolidated 
Materials with 

Salt flats 
Waterbodies Ice/Snow 

Cultivated & 
Managed 

Terrestrial Areas 

Cultivated Aquatic 
or Regularly 

Flooded Area(s) 

Needleleaved 
Evergreen Trees 

Sparse Shrubs and 
Sparse Herbaceous 

Herbaceous Closed 
to Open Vegetation Closed to Open 

Shrubland 

Open 
Shrubland 

(Semi-) Natural 
Terrestrial 
Vegetation 

Bare Area(s) 
Artificial & Natural 

Waterbodies, 
Snow and Ice 

Broadleaved 
Deciduous Trees 

1 

2 

3 

4 

Level 

Definition of the Classification Scheme 



111 

m
an

ua
l 

Training and validation “samples” 
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Landsat scenes: evenly 
distributed, segmented, trained; 
Same year as MODIS 
(spring and fall to collect 
phenological differences) 
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Training Data Management 

 
§ sample Database 

(PostgreSQL with PostGIS) 
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Classification 

 
§ Classification methods:  

- Support Vector Machine 
- Maximum Likelihood 
- C5.0 Rulesets 

(Decision Tree) au
to

m
at

ed
 

m
an

ua
l 
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C5-based Creation of a Decision Tree 

§ C5: freely available software that performs 
a discriminant analysis to separate the 
variables 

§ Originally not created for image 
processing, but you can use it for that 

§ Output for the separability of the classes 
(derived from the training data) is an ASCII 
text file 

§ Python script transfers the ASCII file 
automatically into an applicable decision 
tree 
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TWOPAC Land Cover in Central Asia 2009 
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MODIS Land Cover in 2009 

(MCD12Q1, Land Cover Type1 IGBP)   
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Zoom: Irrigation Region Khorezm 

    

     

  

  

    

    

   

 

   

      

 

Irrigated agriculture (Landsat) 
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Accuracies C5.0 for improved sampling 
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Usage of SRTM 

Improves the accuracy of classes > 3% 



Thank You 


