Julius-Maximilians-
UNIVERSITAT
WURZBURG e

Physical Principles and Methods of
Remote Sensing

Methods of Image
Classification

Dr. Claudia Ktinzer

German Remote Sensing Data Center, DFD
German Aerospace Center, DLR

email: claudia.kuenzer@dlr.de

fon: +49 — 8153 — 28-3280




Julius-Maximilians-
UNIVERSITAT
WURZBURG

Classification Approaches

i DLR

§ Classification: grouping of elements according to

common properties
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WURZBURG Southeast Asia, Indonesia, Sumatra

- Forest on peatland remaining - &dcacia plantation © WWF, Uryu et a. 2007
B Forest on non peatland remaining Qil palm plantation

- Waslte land - Small halder ail palm planiation

B Other land covers - Cleared

§ Land use change from 1982 until 2005 in Sumatra, Indonesia
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MODIS Land Cover Product Reliability
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Post classification change detection on the basis of MOD12Q1 land

cover product

From ... to other types
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I trom Evergroen Broadieaf Forest
':.l from Deciduous Broadieaf Forest
BB trom Mmsd Forest

- from VWoody Savanna

B from Grassiana

- from Pamansnt Yetlare

| trom Croptand
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2008-2009
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| Mo Change
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_Slide courtesy of P. Leinenkugel




Julius-Maximilians-

UNIVERSITAT
WURZBURG

MODIS Land Cover Product Reliability

DLR
Slide courtesy of P. Leinenkugel
ST Stable Pixels 2001-2009

h Land Cover Type Per Cent Land Cover Type Per Cent
e Urban and built-up 98% Evergreen Needleleaf forest 22%
W Evergreen Broadleaf forest 80% Mixed forest 17%
' Water 64% Closed shrublands 12%
Grasslands 63% Barren or sparsely vegetated 2%
e Woody savannas 38% Open shrublands 1%
;f.*"{ 5 Cropland/Natural vegetation mosaic 34% Deciduous Needleleaf forest 0%
f" . Permanent wetlands 33% Deciduous Broadleaf forest 0%
, Snow and ice 24% Savannas 0%

Croplands 23%
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I Mized Forest

[ Closed shrublands

M <pen shrublands

[ Woody savannas

[ savannas

[ arasslands

M Permnanent wetlands
[icroplands

M Urban and built-up

[ cropland/Matural vegetation mosaic
[15now and ice

[IBarren or sparsely vegetated

C g
e 0

140,000

120,000 4\
100,000

80,000

60,000

40,000

20,000

2001 2002 2003

Closed shrublands
== Permanent wetlands

Deciduous Broadleaf forest

2004 2005 2006 2007 2008

=== |\lixed forest
=g Savannas




Julius-Maximilians-

UNIVERSITAT  Comparison of Global Landcover Products A#;;

T

UMD 1992/93

“Slide courtesy of U. Gessner
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Table 1. Generalized land cover legend for map comparison in West Africa including labels
of the Land Cover Classification System (LCCS).

Generalized class LCCS Label
12-A3.A20.B2.XX.D1.E1 and
evergreen broadleaf trees 12-A3.A10.82.3X.D1.E1 and

24-A3.A20.82.XX.D1.E1

12-A3.A20.B2 XX.D1.E2 and
12-A3.A10.B2.xX.D1.E2

decidous broadleaf trees

mixedfother trees A12-A3 A20.B2 and AZ4-A3 A0 B2
shrubs 12-A4.A20.83

herbaceous vegetation 12-A2 .A20.B4

e S e 1 ana a2

other shrub/herbaceous vegetation A24-A2 and A24-Ad

urban/built up E15

barren B16 and A12-A1.A14 and A12-A2 A14
water P22 ana B28-AT

0% 11%

GLOBCOVER MODIS

UMD {5
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MODIS Cloud Mask Comparison Aﬁ

RGB image

MODO09 Cloud Flags

_Slide courtesy of P. Leinenkugel

Clowdy [ | Mined 1:5,500.000
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The Vegetation Model BETHY/DLR 4#;;
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I U 1D-Classification (e.g. LST Intervals) A#;?R
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Histogram of the data set Grey value transfer function
(Class code)
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I U Classification Approaches Aﬁ

Signature Overlap Distinct Signatures
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© ERDAS 1997

§ position of two pixel clouds in a two dimensional feature space
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Spectral Seperability
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I Uw”[':gggﬁlr{éT Signature Analysis of the Histogram Aﬁ

§ lllustrates the distribution of signatures [ﬂ\
§ Shows possible confusion in signatures
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I UNIVERSITAT  Supervised/ unsupervised classification Aﬁ

§ Supervised: interactive

§ The supervised classification is based on utilising known training
areas for classification

§ The user defines training areas for each class in the satellite
Image and the classification algorithm searches for further pixels
with similar properties (statistical analysis of the entire scene)

§ The spectral properties of each class are derived from the
regional mean values of the training areas and the respective
covariance

§ Result: homogeneous classes with explicit labels

§ E.g. box -, parallelepiped -, minimum distance -, spectral angle
mapper -, maximum likelihood - classification

20



I UNIVERSITAT  Supervised/ unsupervised classification Aﬁ

§ Characteristic properties of the class Oi are

Mean value
Ok = A9k, .
N ~ 1=1 1
=1
k ... Bandindex
N ... Number of pixel in the training area

I ... Classindex

Standard deviation (for individual bands) or variance-covariance function

| g(gik,u - gli)z
si =11

k=1K
N-1 1=1,1
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Supervised/ unsupervised classification

DLR

IMAGE DATASET
(Five digital numbers

per pixel)
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response patterns
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pixel to spectral patterns;
assign to most similar
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© Lillesand 1978
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Unsupervised: without user interaction
Purely mathematical, statistical analysis of spectral bands

Cluster analysis for the determination of discriminable classes in
a defined n-dimensional feature space (n = number of bands)

Purely mathematical approach; no semantics, meaning of the
features has no relevance

Algorithm groups image pixels into clusters (grouping is based
on statistical properties)

Result: homogenous classes without any thematic connotation

The thematic meaning of each cluster has to be assigned by the
user in a further step (class assignment)

e.g. iIsodata algorithm, k-means algorithm

23
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Supervised/ unsupervised classification A#7R
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Unsupervised classification

Supervised classification

Computational intensive, adequate for quick
‘snapshot’: which classes are spectrally well
discriminable?

Computational less intensive

Previous knowledge not required (but desirable!)

Definition of number of classes is critical:
If to high — classes not discriminable, if to low —
unnecessary merging of classes

Results are objective
(class assignment subjective!)

Applicable to arbitrary data sets; however, class
assignment individually for each data set!

,New‘, unknown classes in the study area can be
identified

Accuracy often insufficient

Both approaches can be performed with prevalent remote sensing software packages

Knowledge on study area should exist
(ground truth, GPS)

Selection of training areas critical:

risk of being not representative, not enough,
extreme overlap of classes in the feature
space

Results depend on selected training areas
selected by the user

For each new EO-data: possibly new training
sites necessary (illumination- and
atmospheric conditions, land cover
dynamics...)

Only already defined classes (based on
training sites) can be identified

Approved method

24
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Supervised/ unsupervised classification A#7R
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Unsupervised classification

Computational intensive, adequate for quick
‘snapshot’: which classes are spectrally well
discriminable?

Supervised classification

Computational less intensive

Previous knowledge not required (but desirable!)

Knowledge about study area should be
existent (ground truth, GPS)

Definition of number of classes is critical:
If to high — classes not discriminable, if to low —
unnecessary merging of classes

Results are objective
(class assignment subjective!)

Applicable to arbitrary data sets; however, class
assignment individually for each data set!

,New‘, unknown classes in the study area can be
identified

Accuracy often insufficient

Both approaches can be performed with prevalent remote sensing software packages

Selection of training areas critical:

risk of being not representative, not enough,
extreme overlap of classes in the feature
space

Results depend on selected training areas
selected by the user

For each new EO-data: possibly new training
sites necessary (illumination- and
atmospheric conditions, land cover
dynamics...)

Only already defined classes (based on
training sites) can be identified

Approved method
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Unsupervised classification

Computational intensive, adequate for quick
‘snapshot’: which classes are spectrally well
discriminable?

Previous knowledge not required (but desirable!)

Supervised classification

Computational less intensive

Knowledge about study area should be
existent (ground truth, GPS)

Definition of number of classes is critical;

If to high — classes not discriminable, if to low —

unnecessary merging of classes

Selection of training areas critical:

risk of being not representative, not enough,
extreme overlap of classes in the feature
space

Results are objective
(class assignment subjective!)

Applicable to arbitrary data sets; however, class

assignment individually for each data set!

,New‘, unknown classes in the study area can be

identified
Accuracy often insufficient

Results depend on selected training areas
selected by the user

For each new EO-data: possibly new training
sites necessary (illumination- and
atmospheric conditions, land cover
dynamics...)

Only already defined classes (based on
training sites) can be identified

Approved method

Both approaches can be performed with prevalent remote sensing software packages
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Supervised/ unsupervised classification A#7R

DL

Unsupervised classification

Computational intensive, adequate for quick
‘snapshot’: which classes are spectrally well
discriminable?

Previous knowledge not required (but desirable!)

Definition of number of classes is critical:
If to high — classes not discriminable, if to low —
unnecessary merging of classes

Supervised classification

Computational less intensive

Knowledge about study area should be
existent (ground truth, GPS)

Selection of training areas critical:

risk of being not representative, not enough,
extreme overlap of classes in the feature
space

Results are objective
(class assignment subjective!)

Results depend on selected training areas
selected by the user

Applicable to arbitrary data sets; however, class
assignment individually for each data set!

,New‘, unknown classes in the study area can be
identified

Accuracy often insufficient

Both approaches can be performed with prevalent remote sensing software packages

For each new EO-data: possibly new training
sites necessary (illumination- and
atmospheric conditions, land cover
dynamics...)

Only already defined classes (based on
training sites) can be identified

Approved method

27




julius-Maximilians-

UNIVERSITAT
WURZBURG

DL

Supervised/ unsupervised classification 4#7R

Unsupervised classification

Computational intensive, adequate for quick
‘snapshot’: which classes are spectrally well
discriminable?

Previous knowledge not required (but desirable!)

Definition of number of classes is critical;

If to high — classes not discriminable, if to low —

unnecessary merging of classes

Results are objective
(class assignment subjective!)

Supervised classification

Computational less intensive

Knowledge about study area should be
existent (ground truth, GPS)

Selection of training areas critical:

risk of being not representative, not enough,
extreme overlap of classes in the feature
space

Results depend on selected training areas
selected by the user

assignment individually for each data set!

Applicable to arbitrary data sets; however, class

For each new EO-data: possibly new training
sites necessary (illumination- and
atmospheric conditions, land cover
dynamics...)

,New‘, unknown classes in the study area can be

identified
Accuracy often insufficient

Only already defined classes (based on
training sites) can be identified

Approved method

Both approaches can be performed with prevalent remote sensing software packages
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Supervised/ unsupervised classification 4#7R

DL

Unsupervised classification

Computational intensive, adequate for quick
‘snapshot’: which classes are spectrally well
discriminable?

Previous knowledge not required (but desirable!)

Definition of number of classes is critical:
If to high — classes not discriminable, if to low —
unnecessary merging of classes

Results are objective
(class assignment subjective!)

Applicable to arbitrary data sets; however, class
assignment individually for each data set!

Supervised classification

Computational less intensive

Knowledge about study area should be
existent (ground truth, GPS)

Selection of training areas critical:

risk of being not representative, not enough,
extreme overlap of classes in the feature
space

Results depend on selected training areas
selected by the user

For each new EO-data: possibly new training
sites necessary (illumination- and
atmospheric conditions, land cover
dynamics...)

,New‘, unknown classes in the study area can be
identified

Only already defined classes (based on
training sites) can be identified

Accuracy often insufficient

Both approaches can be performed with prevalent remote sensing software packages

Approved method
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Supervised/ unsupervised classification A#7R
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Unsupervised classification

Computational intensive, adequate for quick
‘snapshot’: which classes are spectrally well
discriminable?

Previous knowledge not required (but desirable!)

Definition of number of classes is critical:
If to high — classes not discriminable, if to low —
unnecessary merging of classes

Results are objective
(class assignment subjective!)

Applicable to arbitrary data sets; however, class
assignment individually for each data set!

,New‘, unknown classes in the study area can be
identified

Supervised classification

Computational less intensive

Knowledge about study area should be
existent (ground truth, GPS)

Selection of training areas critical:

risk of being not representative, not enough,
extreme overlap of classes in the feature
space

Results depend on selected training areas
selected by the user

For each new EO-data: possibly new training
sites necessary (illumination- and
atmospheric conditions, land cover
dynamics...)

Only already defined classes (based on
training sites) can be identified

Accuracy often insufficient

Approved method

Both approaches can be performed with prevalent remote sensing software packages
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I U Unsupervised classification: isodata (1) Aﬁ

§ Iterative algorithm
§ Divides pixels successively into subpopulations (clusters)

§ Iterative grouping into clusters is determined according to
spectral distance to the clusters’ mean value

§ Each pixel is iteratively assigned to the class with the
shortest spectral distance to the class centre point

§ Input parameters by the user: number of clusters, number
of iterations, termination condition

31



I U Unsupervised classification: isodata (1) Aﬁ

The ISODATA algorithm uses the minimum spectral distance formula to
form clusters. After the initial clusters are formed the process repeats
itself, locating new means. These new means are then used in the next
iteration, and the next until either the maximum number of iterations has
been performed OR the maximum percentage of unchanged pixel
assignments has been reached.

Cluster Means

Band 2

Band 1

32



I U Unsupervised Classification Aﬁ

Disadvantage
§ Computational intensive
§ Accuracy often insufficient

Advantage

§ adequate for quick ‘snapshot‘: which classes are spectrally well
discriminable?

§ ,New’, unknown classes in the study area can be identified
§ Previous knowledge not required
§ Results objective, only spectral properties are assessed

§ Standard method, implemented in all remote sensing software
packages

33
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§ User defines several training
sites (TS) for each class

§ The more heterogeneous the
class, the more TS required

§ TS should be as homogenous as
possible
distributed over the entire image :_'
§ TS also usable as cluster centres
§ Numerous ,supervised °

classification algorithms e.g.
MinDist, MaxLikel,...

34
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Supervised: Parallel Piped classification (1)

i DLR

§ Determination of
multidimensional ‘boxes’
around the class centre
points (in consideration of
the standard deviation)

§ Uses Euclidian distance

§ Considers statistics
(calculation of standard
deviation for each band)

Band 3 digital number ——e
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© Lillesand 1978
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Supervised: Parallel Piped Classification (1)

i DLR

§ Distinctive feature:

- Box surrounding mean
value with extent of h-fold
standard deviation

Consideration of variance

May generate overlapping
classes in the feature space

Class membership of each
pixel is assessed

Band B
data e vaives

pE2+2s

gz

Wgz-2s

® = pixels in class 1

& = pixels inclase 2

+ = pixels in class 3
7 m unclassifind pixals

_____ . '
SRR B =
7 T MAZ = mean of Band A
& & T ,
Y 1.: ,??1-"':1 class 2
_____ __"'".‘ o= ® * ® WB2=meanol Band B,
& :l ® clzes 1 class 2
7 4l 577
F] =
_____ claks 2 g
| i
1 h i
1 § I
Y R -
B
= =5
Sznd A

dzia g values

© ERDAS 1997
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§ ,Parallel piped
classification of
Cairo based on

Landsat TM

§ Pseudo colour TM
7,5,2und4,2,1
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§ Minimum distance to mean values
§ Class representation:
. Mear_1 -Vector: g = (gll ) )T
§ Class assignment
- Each pixel is assigned to the class with the minimum distance to
the class’ mean value in the feature space
§ Discriminator

- In 2D-space: perpendicular bisector
- In nD-space: Hyper-plane

© Lillesand 1999
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Supervised: Minimum distance classification (I1)

i DLR

A
§ Calculation of Euclidian 9,

distance between pixel
U and centre points O

d=4(g-7")(g- g)
d°=(g-9) (g-7")

§ Advantage
Easy calculation

In order to avoid
misinterpretations:
small assignment radii

§ Dlsadvantage

Inadequate statistical
rationale

Does not account for
range of dispersion

150

100

50

i
100

|
150

© Lillesand 1999
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Supervised: Minimum distance classification (I1)
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§ Example for
L2unjustified* assignment

- Class 1: homogeneous
(e.g. water surface)

- Class 2: heterogeneous
class (e.g. settlement)

- Pixel close to the
perpendicular bisector
may be assigned to the
homogenous class,
although membership
to the inhomogeneous
class is more probable

J1

41



Julius-Maximilians-

UNIVERSITAT
WURZBURG

Supervised: Spectral Angle Mapper (SAM) (1)

i DLR

§ The SAM-Method is based on the
estimation of the spectral similarity
in the (n-dimensional) feature space

§ Signature is described by a vector,
starting at the coordinate system’s
origin

§ Length of the vector resembles
reflection intensity

§ Difference between spectrais
described by the angle

§ By assessing the angle difference
between pixel and reference

spectrum an image can be divided in

any number of classes

Band b

A

Reference-
spectrum

Band a
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I ”w"[-lﬁ';{’,‘r{? Supervised: Spectral Angle Mapper (SAM) (I1)

i DLR

8 Calculation of angle a is based on trigonometric function of
the arc cosine, for which for all bands nb, all angles between
the sum of all target pixels t, and all reference pixels r is

calculated

Ol = COs

nb R
2.4
1= 1

1/2
nb
2
2. T
j = 1

7

»

a = spectral angle between vectors
nb = number of spectral bands

t = target pixel

r = reference pixel

§ A pixel is assigned to the class whose spectrum has the
smallest angle with the respective pixel

§ Size of the angle in

radiant

§8 Angle is assessed, not the length of the vector!
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UNIVERSITAT
WURZBURG

Supervised: Spectral Angle Mapper (SAM) (I1)

i DLR

§ Advantage

Fast and easy approach
Comprehensible for the user

Relative robust against
lllumination differences
(topography, light source,

sensor, etc.)
Comparability of image
spectra with lab spectra

§ Disadvantage
lllumination tolerance is accompanied by insensitivity for detecting

certain physiologic changes

3
spectrum for class B

Vector of endmember

Spekirum for Klasse B

rer-

Class A
Class B

Vector of endmember
spectrum for class A
Spekinum Tur Kiasse A

N B

Band x

© ladamer.org

Similar spectra, which only significantly differ in their albedo (e.g.
needle leaf and broad leaf forests), are wrongly classified
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UNIVERSITAT ot :
b Statistical Basics A#;:

Mean value:

Matrix diagonal:
variances of the
single variables

Other fields:
co-variances
between the
Image bands

Variance-Covariance-Matrix:

© Simpsons

2NN vay

Y [}

SN, @ )
Variance = square of standard deviation:

Covariance (for multiple variables):

Measure for correlation between
two or more variables

variable 1 variable 2
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I U Statistical Basics - Probability Density A#;?R

Lines of similar probability

densities in 2D-case ellipse
A | Porbability density function

3D case
e

)

7-9=3

MeBwerte Az

© Albertz 1991

MeBwerte A4 46



I UNIVERSITAT  Supervised: Maximum Likelihood Classification () Aﬁ

§ Is based on k-dimensional normal distribution

§ Class membership is based on highest probability
density

§ Discriminator:

- Isolines with equal probability density between the
respective classes
1)1

Example: 1D case

a03- | /\ _ (shaded: wrongly classified areas)

© Albertz 1991
]

47
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I UNIVERSITAT  Supervised: Maximum Likelihood classification (Il A#;;

Probability density
v

function value

Band 3 digital number — —e

Banc! 4 digital rumber ——=

© Lillesand 1994 I-I'l.r&ter/

§ Probability density function calculated on the basis of mean vector and

covariance matrix
§ Vertical axis: probability of class membership
§ Each spectral class has a probability density function (bell shaped) of class

membership

48



Julius-Maximilians-

UwﬂdgggﬁgéT Supervised: Parallel Piped classification (V)

8 Maximum Likelihood
Classification of
Cairo City
based on Landsat TM

§ Pseudo colour TM
7,5, 2 und4 2,1

-/
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I UNIVERSITAT  Supervised: Support Vector Machines (1) #

DLR

§ Support Vector Machines (SVM)
§ Large margin classifier

§ Groups a population within an d-dimensional feature space In
classes so that the margin between the classes is maximised

§ Starting position

n training data (X, Y,), (X, ¥5), ---» (X, Y;)
- with x;e R,
and y;e {-1, +1} (i=1,2,...N)

§ Geometrical approach
Group samples in the feature space into two classes using a hyperplane

©ESA
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I UNIVERSITAT  Supervised: Support Vector Machines (I1) 4#7

DLR

§ Optimisation problem: Maximising distance between classes
and hyper plane

SVM
hyperplane

Margin
width

© Moutrakis et al. 2011

Misclassified

instances
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I UNIVERSITAT  Supervised: Support Vector Machines (111) 4#7

DLR

§ Also in n-dimensional feature space applicable

§ Also for non-linear discriminable classes applicable

¢

© imtech.res.in
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I UNIVERSITAT  Supervised: Support Vector Machines (1V) 4#7

DLR

§ Popularity of SVMs in remote sensing analyses within the last
decade

T | T T T
O Paper Frequency N
25 1

20 A

10 1

<2003 2004 2005 2006 2007 2008 2009 2010
(April)

© Moutrakis et al. 2011
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I UNIVERSITAT  gupervised: Support Vector Machines (V) #

DLR

Disadvantage

§ New training data required for each input data set (even after e.qg.
atmospheric correction differences in class variance

§ Non-linear discriminable data require additional computing time

@ Advantage

§ Little computational costs (based only on a few support vectors)

§ Good generalisation (performs well for heterogonous classes)

§ Good results with only a small number of training data

§ works well also with high number of dimensions
(multi/hyperspectral)
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I UNIVERSITAT  Supervise Classification: Decision Trees (1) /-#

DLR

w W W W W

Y/IN Y/N

YIN Y/N Y/N YIN

Many global land cover classifications

Friedl & Brodley, Hansen et al., Cihlar et al., Wen & Tateishi, ...
Well suited for differentiation of vegetation types

Often used for local surface extraction (cloud, snow, ice ...)
Terms: Root, Branches, Nodes, Leaf
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L

U Supervised: Decision trees (111) Aﬁ

Disadvantage
§ A-priori knowledge required
§ Construction of tree is labour- and time-intensive

§ Decision rules are only transferable with limitations
(variation in time and space)

Advantage

§ Quite flexible and versatile applicable

§ Standardised and comparable results

§ Only little additional efforts once the decision tree is constructed
§ very focused with respect to band and feature selection

§ decisions are based on physical properties

§ extendable and transferable (with certain efforts for adaptation)

§ Only little previous knowledge required to apply existing tree

§ reasonable for large areas

§ Implemented in all commercial remote sensing software packages
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Julius-Maximilians-
I %".—;'EEE?,‘J@T Supervised: Object-oriented classification (1) %ZR

Fields of application
§8 High resolution data (Airborne, IKONOS, QuickBird, ETM+, ASTER)

§ Complex land use classes (Urban areas, commercial areas, road
networks,...especially images with ‘structures’)

§ Detailed land use and vegetation classification
§ Software: eCognition (Definiens Developer)

- { ‘f

Satellite Image object—oriented result pixel based result

L
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”w",-j'h’éﬁﬁ'{éT Supervised: Object-oriented classification (I1)

DLR

ID |Meandiff.t| Shapeindex|Prozentual
3 29 61 112 0,00
] 14 46 2,37 59,48
11 12,31 1,54 70,13
22 819 1,13 100,00
32 -14 B2 1,20 852
35 g.ar 146 55,22
36 -19,63 144 14,81
42 10,30 1,61 89,47
)EI 11,92 1,59 100,00
(73 13,85 1,80 48,00
74 2798 1,70 14,29
85 12,12 1,51 67,86
137 18,88 1,06 50,00
1449 841 1,33 100,00
181 483 1,24 62,50
1598 1143 1,58 80,00

IKONOS 08/2001

Segments
© Mott, TU Miinchen 2003
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Julius-Maximilians-
"w"i-}L’EEﬁ'RTéT Supervised: Object-oriented classification (I1) A#;;

§ Segmentation: the scale-parameter

“scale” parameter increases: generalisation increases

< “scale” parameter decreases: level of detail increases

© Mott, 2005
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Grey level

IKONOS 08/2001 © Mott, TU Miinchen 2003
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I ”w",-j'EEEﬁ'JéT Supervised: Object-oriented classification (V) ﬁ

Object
e
_ — Grey level
1 B
- Form

Texture

Context

Additional Information

v

D EM © Mott, TU Miinchen 2003 61
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UNIVERSITAT  Supervised: Object-oriented Classification (IV) ‘#;?R

Grey level

Additional Information

IKONOS 08/2001 © Mott, TU Miinchen 2003



Julius-Maximilians-
I "w".-j'k’iﬁﬁ'{éT Supervised: Object-oriented classification (V) A#;ZR

§ Construction of a semantic network
§ Objects of various scale levels are interconnected

Level 2

- N - e
o e Y e s o e Y e A o B
evel 1 RS

© Mott, 2005

“Bottom up region merging technique” starts on the 1-pixel-object level. The
objects that are created on different scales are connected by a hierarchical
network.
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I ”w",-j",;'E';ﬁ'géT Supervised: Object-oriented classification (VI)

i DLR

§ Obiject features
@ -

|

§ (A)original image IKONOS 8/2b01, (B) mea,
(C) standard deviation, (D) ,compactness

(.
=
L

© Mott, 2005
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Julius-Maximilians-
I ”w"dKEEﬁEéT Supervised: Object-oriented classification (VII) A#;;

§ Construction of class descriptions via fuzzy-membership curves
for significant object features

Y = Degree of fuzzy-membership
1,00

0,75 -

0,50 -

0,25

0 10 20 30 40 50 60 70 X =objectvalue
T B

ucrispu ufuzzyn ucrispn ufuzzyu ucrispn © Mott, 2005
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Supervised: Object-oriented classification (VII)
Example Osterseen

i DLR

Area wide classification

B wetland
LW - meadow

0 LW - maize
LW — grass land typ 1
LW — grass land typ 2

Bl Needle-leaved forest

W Broad-leaved forest
Settlement/ impervious surface
Water surface

In ArcView-Shape format
N Classification by NSG/FFH

IKONOS 08/2001

50 1000 Meters

N Distinctive land cover classes

IKONOS 08/2001

© Mott, TU Miinchen 2004
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Julius-Maximilians-

UNIVERSITAT Supervised: Object-oriented classification (VII) #
WURZBURG Example Osterseen DLR

§ Quantitative statements possible

FFH area of southern Osterseen, proportion land cover in percent, total area 407ha

Versiegelte Flache / Siedlung
1%

0 wetland

LW - meadow

LW - maize

LW — grass land typ 1

LW — grass land typ 2
Needle-leaved forest
Broad-leaved forest

P A —— Settlement/ impervious surface

LW - Grinland Seggenried/ Moor
7% LW - geméhte Streuwiese / 9 14% Water surface

Rohboden
2%

Gewasser

Baumbestand - Laub 44%

20%

Baumbestand - Nadel
12%

IKONOS 08/2001 © Mott, TU Miinchen 2004 67



Julius-Maximilians-

WURZBURG

classification (VIII)

I UNIVERSITAT Supervised Classification: Object-oriented

i DLR

~ © Mott, TU Minchen 2004

0 125 250 500 Metet

NRelationships between
adjacent objects!

B wetland

LW - meadow

0 LW - maize
LW —grass land typ 1
LW — grass land typ 2

B Needle-leaved forest

W Broad-leaved forest
Settlement/ impervious surface
Water surface

Single trees

NLandscape elements
can be detected
automatically
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ol Modiniians: : — : : e
UNIVERSITAT Supervised Classification: object-oriented classification (IX)

WURZBURG

Example Mekong Delta

DLR

SPOTS5 satellite image

(24.03.2010)

pixels: 10m resolution
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Julius-Maximilians-

UNIVERSITAT Supervised Classification: object-oriented classification (IX)
WURZBURG Example Mekong Delta DLR

TerraSAR-X Stripmap HH mosaic (31.12.2009; 13.02.2010; 24.02.2010)

pixels: 3m resolution
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UNIVERSITAT Supervised Classification: object-oriented classification (IX)

WURZBURG Example Mekong Delta

DLR

Watermask from TerraSAR-X mosaic

pixels: 3m resolution
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UNI:;HERSI'I‘XT Supervised Classification: object-based classification (1X)
WURZBURG Example Mekong Delta

DLR

SPOT5 Image segmentation (24.03.2010)

pixels: 3m resolution
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UNIVERSITAT Supervised Classification: object-oriented classification (1X)
WURZBURG Example Mekong Delta

DLR

Mangrove Map for Ca Mau Province, Mekong Delta, Vietnam. 2010.

Rhyzopharia

- Avicenmia
- Mixed mangrove

Mangrove ! Aquaculture
Agriculture } Mon-forestry
B rouerists
- Artiicial f Bare
- Rwer ! Canal
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julius-Maximilians-

WURZBURG

UNIVERSITAT Supervised Classification: object-oriented classification (1X)

Example Mekong Delta

Vietnam - Ca Mau Province - Mangrove Map 2010
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I ”w"dgi'éﬁ‘.léT Supervised: Object-oriented classification (IX) ﬁ

‘ Disadvantages

Only few, relatively expensive(!) software solutions (dongle)
Iterative, very(!) time consuming process

Quality highly dependent on competence of user

Rule set often only partly transferable

Ok for smaller areas, but not so much for mass data throughput

@ Advantages

Very high accuracies can be obtained
Direct post-processing in GIS
Fuzzy logic rationale applicable

Additional object features (beside spectral information) can be used for
classification

Very useful if spectral variance within a class is higher then spectral
variance between classes (e.g. urban)
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I UNIVERSITAT : : :
WURZBURG New Paradigms in Remote Sensing A#;ZR

How much is too much???

A

Do you really want to see every single car?
Too much information also creates confusion.

300 channels are usually not more useful than 150. The same
might apply for spatial resolution: at one point its all too much.
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| L Validation v

There are 2 essential questions you need to ask for each
classification:

1. How accurate is the classification?

2. How was the accuracy recorded?

If these questions are not answered adequately, then
there is reasonable doubt ...
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Julius-Maximilians- - -
UNIVERSITAT Validation: indirect validation — reference data with a higher #
WURZBURG resolution DLR

§ Different users have different demands for accuracy
assessment

§ Proper registration of the data

§ Errors in the basis for comparison are propagated

§ Reference maps
Often not up to date
Accuracy unknown
Different classification scheme

§ Field campaign
Time of recording?
Expensive
Field data is also a type of classification

§ Data with higher resolution
Time of recording ?

Are the classes clearly detectable?
Spectral resolution (Landsat 7 bands — IKONOS 4 bands)
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I wurzsune Validation: Ground Control Points - GCPs Aﬁ

§ GCPs are control points or sample points
- GPS points, which classes were collected in a field survey
- Sample points, which are chosen on the record of this data

set or another data set (larger scale: aerial photography,
high resolution data)

- Selection of sample points in the image and subsequent
field survey (if possible) = ground truthing
§ For each control point the ,true” class is determined

§ Accuracy assessment means:
Comparison of the classification with the assigned ,,true* class

§ Results will be shown and analysed in a confusion matrix
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Validation: User and Producer Accuracy

i DLR

Classification

\
Agreement

Reference map
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I "w"dgiﬁﬁ'{@ Validation: User Accuracy

i DLR

AreaAgreement

.. ; AreaClassification
Classification

1
Agreement
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Validation: Producer Accuracy 4#7
DLR
AreaAgreement
Aréageference map Reference map

l
Agreement
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universiTaT Validation / Classification Accuracy: Producer vs. ‘#7
WURZBURG User Accuracy DLR

E.g.: Class ,Forest*

Producer Accuracy: 91 % User Accuracy: 84 % Mapped

/ ,Forest*

Mapped

/ ,Forest*

Mapped ,Pasture® Mapped
~Water”
How many % of the Probability, that a pixel, assigned to this

training area were class, really belongs to that class
correctly classified
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s Validation: confusion Matrix v

Comparison of the target classes to the actual classes
The reference pixel in the matrix

Referenzkl Klassifizierungergebnis
' Klasse 1 Klasse 2 Klasse k TOTAL
Klasse 1
Klasse 2
Klasse k
TOTAL
Beispiel:
Klassifizierungergebnis
Referenzkl. Wald Stadt Industrie TOTAL
Wald 179 5 3 209
Stadt 12 281
Wiese 216
Industrie 28
TOTAL 722
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UNIVERSITAT
WURZBURG

Validation: also ,Accuracy Assessment’

DLR

Ground truth polygon that have been mapped during a field campaign

Producer Accuracy (%)

User Accuracy (%)

. |agrar sparse

agrar medium
®lagrar dense
calcite

desert vegetation dense
= lake deep

| imestone light

{ metamorph dark

% metamorph light

mountain vegetation sparse
mountain vegetation dense
river deep

1sand crusted

sand dune

sand pure

| sandstone
settlement
weathered coarse
{weathered medium
2| shadow

52.94
91.08
96.26
76.14
97.56
95.70
95.45
81.79
80.10
87.20
81.60
98.61
88.72
74.81
68.97
78.27
88.64
97.65
80.81
92.45
86.81
98.65
71.61
88.27
95.09
100.00
91.92

93.26
84.05
93.26
100.00
98.30
31.45
90.57
83.75
70.83
86.51
100.00
97.82
61.35
94.84
100.00
88.73
52.00
82.82
96.85
24.50
98.14
95.38
100.00
100.00
85.05
56.04
88.55
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Julius-Maximilians- . .
UNIVERSITAT  Validation: Indirect validation — reference data with a
WURZBURG i

higher resolution

§ Aerial photographs or higher-resolution data are considered as
a good basis for comparison (Congalton, 1991)

§ Assumption: Interpretation of the higher-resolution data is
100% correct (applies not always)

§ There are also existing land use maps for reference.

Note: These maps are often not up to date and their accuracy is
not well known

86



Julius-Maximilians-
I ”w"dﬁﬁﬁﬁ‘@ Validation: Exclusion of homogeneous classes ﬁ

§ In order to prevent the ,,distortion” of the quality measure
certain homogeneous or uninteresting classes are usually
excluded from the validation

§ Depending on the problem, e.qg.

- Large bodies of water
- Clouds and cloud shadows
- Snow
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Julius-Maximilians-

I ”w"dgigﬁ‘géT Validation: Principles of sample design ﬁ

Class definition

§ Reference data should be collected under the same assumptions
and in the same class scheme (same classes and decision
criteria), as the classification to be tested

Adequate spatial resolution —

§ Reference data should be collected in the same scale level
(same MMU). The sample unit (e.g. pixels, pixel clusters,
polygons) specifies the level of detail.

Sample number

§ At least ~ 50 Sample per class it should be. When dealing with a
very large study area (> 400,000 ha) or many classes (> 12) the
sample number should be increased. (e.g. 75— 100 per class).
The sample number is to be adjusted, dependent on the
Importance of the class und the class-specific variability in the
feature space.

88



I Udegggﬁ]géT Validation: Principles of sample design ﬁ

Sampling plan

§ A stratified, randomly distributed sampling plan for each class is
to be made. This ensures that all classes are examined.

§ The organization of a field campaign is to be conducted
according to the classification.

§ When ground truth data are collected at the beginning of a
project it is recommended to distribute the samples randomly.

Important is the logical distinction between training and
reference areas.

Summarized from Congalton and Green 1999
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Julius-Maximilians-

I U Spectral Unmixing (1) Aﬁ

§ Also known as

Spectral Mixture Analysis
Sub Pixel Classification

§ ldea:

The majority of the pixels measure the reflectance of more
than one ,,pure” object class (,,mixed pixels”)

Multispectral data of one pixel include — depending on the
area fraction — a weighted average of the reflectance's of the
participating object classes

The task of the ,,unmixing“ is to determine the area fraction
of each pixel

The sub-pixel classification does not determine the sub-pixel
location of the classes, but only the portion
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I ”w",-j'L’EEﬁ'géT Spectral Unmixing (II) - mostly for hyper spectral dataA#7

DLR

©DLR ©DLR
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UNIVERSITAT
WURZBURG

Spectral unmixing (llI)

i DLR

§ Pixel spectrum is rarely ,pure’

§ E. g. mixed pixels from two or more object classes (50:50 mixture of ,,parking“ and
svegetation“ - edge pixels of a parking lot)

§ Classes to be segregates are so-called “endmembers”

14000

Mixed Spectra Example

12000

10000

8000

6000

Digital Count

4000 +

2000

Parking Lot

Vegetation
= = = +1:1 Mixture

0,9 1,4 19 2,4

Wavelength (microns)

©DLR
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I U Spectral Unmixing (1V)

i DLR

§ Example

As a result of the unmixing process
of the multispectral input image a so-
called fraction-(endmember)-image
IS produced. The number of spectral
bands of the new image are
corresponding to a maximum of those
of the original.

0.0 1.0

0.0 0.5

Red
Fraction
Image

Green
Fraction
Image
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UNIVERSITAT
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Spectral Unmixing (V)

DLR

Sub-Plxel Boundary Pixel

ED
=

Intergrade Sub-Pixel Linear Sub-Pixel

&N R carted NoOOAT-NI
where © Fisher 1997
Aomoon-matri of spectral endomerbers Cspeateal librane) i nospectral bands

oveelor of ik nowen alhundances o he endmembers

I measured rellecton ol the imigze pisxel

n ¢l
Bo=o2 ¢y <R ove, vl 20 ¢ =1
! i-1 A i f =1

where.

Fapeetral cetlectance o o mised Apectruem in vmaee hanmd ¢
Fooracten of each emedmemnber o enloulined Tendd by aand
R
¢ bBand nurmbher

rellectanoe: ol The endmembe: spectrumm am hanida

Soench o the oonmaee cndioembers

£ooprsidual crmer o the didforenas betawoen the measured and the medeled 135 i bad 1

oo medeling errer in Bandd

7 narmbuer ol endmembers

© Kiinzer 2005

Result of unm

ixing of

&

Landsat TM in area of

-] _|. I|I ¥ E k A
£ ] Ax : + Bx § +Cx § \
* A E #| e f
3 L M I [
. \\_\_.-' "..-' e R .'1-" : |I
i gl b Wme kg b i g Wi gt
© Kiinzer 2005

Wudan, China. Brightness: ‘coal’-share

100%
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Julius-Maximilians-
| UNIVERSITAT Spectral Unmixing (V1) v

§ Theory of linear unmixing:

k=number of
bands

- i known grey values of the e-th endmember in the i-th band
- g5  Greyvalue of a pixel in the i-th band

Fraction components (=unknown), noise!

Error term (=improvement in the sense of adjustment)

O It can not be determined more fraction components than error
equations can be set up, i.e. not more than bands than are available in
the original image.
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I U Spectral Unmixing (VII) #
DLR

§ First step:

- Search for ,,pure* endmembers in the original image (i.e. spectrally distinct
classes that do not consist of mixed pixels)

- Extracting the spectral features of these endmembers
- Pixel Purity Index Calculations (PPI)

§ Second step:
- Setting up a system of equations
- Solved by the method of least squares

§ Third step:

- The found endmember components are sequentially multiplied by all pixels
- Result: fraction images in relation to the selected endmembers
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Spectral Unmixing (VIII)

4 Endmember
A: Coal
B: Desert sand

C: Arkose
Sandstone

D: Vegetation

© Kiinzer
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Spectral Unmixing (1X) — Endmember search A#DLR

Baflectonce (%)

Field measurements
with a spectroscope

Pre-processing of the spectra

o F

26

15 |

85 1o . 15
Wovelength [grm}

Reflectance (%) {Cfiset for clarity]

X A
Corrected spectra
- 1S5 —
S (X
el P I oY
Aster - o
ﬁ/ﬁ R
il .~ Hyperion \
o5 .0 e elengnfl"lj - 7.0 25
©DLR




I U Spectral Unmixing (X)

i DLR

@ Advantages:
— Physical method of this method

Objective method without subjective influence of the producer
Quantitative results on sub-pixel basis

Also detected objects that are not perceived visually

Especially suitable for chemical, geological and mineralogical
Investigations

Not only for hyper spectral data

‘ Disadvantages:
- Pre-processing of the images and spectra is very complex

Can be performed only by experts

Difficult in topographically heterogeneous areas (DTM Quality!)
Minimum number of recording channels is required!

Software packages with programming interface are needed
(e.g. ENVI(IDL, C))
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Spectral Feature Fitting (SFF) (1) ‘#DLR

§ AIm

- Comparison of the pixel spectrum with a reference spectrum

§ Method

- Based on ,least squares — best-fit* approach:
,The better the fit, the smaller the sum of the squared distances between the two
spectra compared

The measure for this is the Root Mean Square Error (RMS)

It will be generated a corresponding RMS-image

The RMS-image shows which are similar to the selected endmember spectrum
Or comparison of the input data set with the complete spectra database O

The comparison of the spectra is only useful if the “Continuum” has been
removed.

100



Julius-Maximilians-
UNIVERSITAT
WURZBURG

Spectral Feature Fitting (SFF) (11)

i DLR

§ A “continuum?” for each input spectrum is defined (local maxima are

determined and connected linearly)

‘40 v eI Sy \iﬂj
i Continuum Remaved i
L Spectrum 4
L pee Conl.m um
o 0.6
E -
aa
= i Kaolinite Spectrum
L
0.2+~
ool o o e
Q5 1.0 1.3 2.0 2.5

Wavelength (micrometers)

© Kruse 1999
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Spectral Feature Fitting (SFF) (111)

i DLR

§ Minima of the corrected spectrum are determined

1.1

1.0 1

0.8 '|

0.8 =

HORMALIZED REFLECTAMCE

HORMALIZED

CONTINU LU R N T T TR E TR R R

T

1f2 DEPTH

DEPTH
0.7 4
0.6
PGSITION

0.5 ' - i

2.1 2.2 25

WAVELENGTH (Micromatara)
© Kruse 1999

The 10 strongest absorption regions per spectrum are determined
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I UNIVERSITAT Spectral Feature Fitting (SFF) (1V)

i DLR

§ Wavelength, position, depth, width at half maximum depth
(full width at half the maximum depth (FWHM)) and asymmetry
for all 10 distinct absorption regions are determined and listed

In a table
§ Comparison with reference spectrum

ASYMMETRICAL LEFT SYMMETRICAL

|V

(Negative) {Zero)

ASYMMETRICAL RIGHT

-

{

>

Positive)

© Kruse 1999

103



+

Julius-Maximilians-

U Spectral Feature Fitting (SFF) (VI)

L

i DLR

Advantages:

Has proven particularly useful in geology

Effective in the search of “known” objects/materials

Useful method for the incorporation of the spectral databases and
spectrometer measurements in the study

Physical background of the method

Objective method without subjective influence of the producer
Not only for hyper spectral data

Disadvantages:

Very laborious and time consuming (PhD thesis?)
Pre-processing of the images and spectra is very complex
Can be performed only by experts

Difficult in topographically heterogeneous areas (DTM Quality!)

Minimum number of recording channels is required!
Software packages with programming interface are needed
(e.g. ENVI(IDL, C))
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Automated tool TWOPAC Aﬁ

TWOPAC — Twinn

ed object and pixel-based automated classification chain

PRE-

INFUT
DATA PROCESSING

CLASSIFICATION
SCHEME [ ™|

SAMPLING

SAMPLING DATABASE § Standardized interface for process control

EXPORT — OGC Web Processing Services (WPS) —

7/ —— 7

4
/ TRAINING
v

Classified CLASSIFIER
Image CREATION

Confusion
Matrix
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INPUT PRE-
DATA PROCESSING
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U Input Data (‘Stack’ Generation) A#;?R

§ MODIS (NIR, RED, NDVI, 250m)

Annual time series, calculation of mean,
standard deviation, maximum, minimum,
amplitude

| )
§ Rather mean values with guaranteed stability
than single values (transfer and comparability)

05 05
I~ Correlation
matrix between
02 ~ full year 02 | winter-spring variables, layer
01 o1 with too high
. ‘ correlation
]I,iﬁ' g & £ £ £ & £ F I] I,i.i' g & £ £ £ F £ F indices to be
S F g s gy s sy 8y g s 8 g 5 8§ eliminated
08 (e.g. NDVI full
g /N year max. and
W / | NDVI summer
02 summer 02 autumn-wintef max)
. Layer Stack: > 50

ol 0.4 107



I U Input Data (‘Stack’ Generation) A#;?R

§ MODIS (NIR, RED, NDVI, 250m)
§ SRTM (height, slope, exposition, 250m)

INPUT PRE-
DATA PROCESSING
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I UNIVERSITAT  Definition of the Classification Scheme A#;?R

INFUT PRE-
DATA FROCESSING

§ Based on the standards of the
CLASSIFICATION Land Cover Classification
System (LCCS)

manual
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Definition of the Classification Scheme

DLR

Level
1 Primarily Vegetated Area(s)
¥ X _
2 Terrestrial Aguatic or Regularly
Flooded
{(Semi-) Natural’
Cultivated & (Semi-) Natural Cultivated Aquatic Aguatic or  §
3 Managed Terrestrial or Regularly Regularly
Terrestrial Areas Vegetation Flooded Area(s) |: Flooded :
i Vegetation /

Needleleaved
Evergreen Trees

Herbaceous Closed
to Open Vegetation

N

Sparse Shrubs and
Sparse Herbaceous

Primarily Non-Vegetated Area(s)

K/ \X

Terrestrial

Aquatic or Regularly
Flooded

Artificial
Surfaces &
Associated

Areas

VARN

Bare Area(s)

AN

Unconsolidated
materials

Unconsolidated
Materials with
Salt flats

v

Artificial & Natural
Waterbodies,
Snow and Ice

h
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Training and validation “samples”

i DLR
Landsat scenes: evenly

distributed, segmented, trained,;
Same year as MODIS

PROCESSING (Spring and fall to collect
phenological differences)
CLASSIFICATIONL L1 sampLinG
N k| ::- R
T @’Fﬂﬁ ’F&-‘Ff LSS
250 500 1.000 o Jf'j;ﬁ* #j W ;ﬁ #
E_" -1»- ------ o dal 1
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Training Data Management A#;?R

INFUT
DATA

PRE-
FROCESSING

SCHEME

CLASSIFICATION

r

SAMPLING

SAMPLING DATABASE

EXPORT

/ TRA‘IFIING // VALI[‘ZIT&TIDN /

§ sample Database
(PostgreSQL with PostGlIS)
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e Classification v

INFUT PRE-

DATA PROCESSING
T
>
S CLA“EEE'E{T:_’:‘E IONL ) sampLinG
=

§ Classification methods:
SAMPLING DATABASE

©
9
I EXPORT
=
= - C5.0 Rulesets
T ¥ ¥

(Decision Tree)

TRAINING

Classified CLASSIFIER
Image CREATION

WVALIDATION

113



Julius-Maximilians-

UNIVERSITAT
WURZBURG

C5-based Creation of a Decision Tree #
DLR

Eule=:

Rule 1: (1067/1, lift 6.4) § C5: freely available software that performs

Fule

ndvi mi su > &35
ndvi r su <= &26
ndvi m ws <= 817
red m aw > 1233
nir m su <= 2624
nir ma ws > 2183
nir m ws <= 4342
->» class 17 [0.58588]

Z: (501, 1ift &.4)
ndvi ma su <= 1608
red r aw > 4280
nir ma su > 1728
nir r su > -25573
nir m ws <= 2550
=» class 17 [0.58588]

Rule 3: (404, 1lift 6.4)

ndvi mi yr > -871
ndvi m yr > 1822
ndvi r yr > 3951
ndvi ma aw <= 2306
ndvi m ws <= -217
red mi aw <= 841
nir ma aw > 5298

-> clas=s 17 [0.898]

a discriminant analysis to separate the
variables

§ Originally not created for image
processing, but you can use it for that

§ Output for the separability of the classes
(derived from the training data) is an ASCII
text file

§ Python script transfers the ASCII file
automatically into an applicable decision
tree
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I UNIVERSITAT TWOPAC Land Cover in Central Asia 2009 4#7
DLR

EU[}DE E'DDID"E ?U[}DE BU[}DE
=
[ 5
- g Y 3 =
o .
et ' -
[ ., - ki
2y a3 :
5 A X
Z .
-,
= o G - . =B,
3 'lf—‘,‘" g " '.E_,_,, e
vy ‘o - " - -
- J;ﬂt _-ﬁ-
1.000
T — T [~
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UNIVERSITAT MODIS Land Cover in 2009 v

ﬁﬂﬂqfﬂllE ﬁﬂﬂ‘qlnﬂE ToﬂﬂliuﬂE BDDGIIUIIE

(MCD12Q1, Land Cover Typel IGBP)
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28"0'0"E 60°00"E 62"{3'[]' E
1 1 _

=

; ::g

— lIrrigated agriculture (Landsat)
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Co Co

class user's producer’s

accuracy acouracy
cultivated and managed terrestial area 92 & 94 1
cultivated aquatic or requlary flooded area 436 90 7
needdeaved evergreen lrees 80.6 80.8
broadeaved deciduous rees 9z.7 931
sparse shrubs and sparse herbaceous G5 3 9% .5
herbaceous closed 1o open vegelalion 510 913
closed to open shrubiand a4 & 340
cpen shrubland 94 1 04 3
bare area. unconsolidated matenas 955 96 2
bare area. unconsolidated matena s with salt fals 538 9.8
Ice 751 774
waterbodies a8 3 93 6
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feature usage

Usage of SRTM

i DLR

mmm) |Improves the accuracy of classes > 3%

100%
80%

60% -

40%
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