third lecture

Three Lectures:
One  ESA explorer mission GOCE: earth gravity from space
Two  Signal Processing on a sphere

Three Gravity and earth sciences
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gravity and earth system science

There are three ways to use gravity in earth system sciences
1. Temporal variations of geoid/gravity
2. Geoid/gravity as a measure of mass imbalance

3. Geoid as a physically relevant reference surface



gravity and earth system science

Usage One:
Temporal variations caused by re-distribution of masses in earth system:

- atmospheric masses

- continental water cycle

- sea level rise: steric effect vs. mass effect
- ice melting: Greenland, Antarctica, glaciers
- post-glacial adjustment

- earthquakes

Challenges:
- separation of effects (use: background models)
- aliasing (use: background models)
- spatial resolution

Satellite mission GRACE (2002 — present)



gravity and earth system science
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GOCE versus GRACE
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gravity and earth system science

Usage Two
geoid and/or gravity as a measure of mass imbalance
- deviation of the geoid from a hydrostatic equilibrium figure
- geoid and/or gravity anomalies compared to various
models of isostasy (mass balance)
- gravity inversion jointly with seismic tomography



from gravity to geodynamics

a global geoid map based on two months of GOCE data
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what do we see at large scales and at short scales?



from gravity to geodynamics

What do we see at large scales ?
* little resemblance to topography and

latitude [ |

tectonic plates
 geoid highs at convergence zones

and concentrations of hot spots

(a] 50 100 150 200 250 300 350
Tangitude [ ] meters

 only at convergence zones associatior
with topography/ plates

 primary source of large scales:
deep mantle convection

Richards & Hager, 1988

Hager and Richards, 1989



from gravity to geodynamics

What do we see at short scales ?
o at first sight gravity anomalies resemble
topographic heights

* a closer look reveals: gravity anomalies

as derived from topography show

USGS: Seismici H
PR S marked differences to the observed ones
Nazca Plate and South America

» these are deviations from

mass balance (= isostasy)

e various concepts of isostasy exist, i.e. of
mechanisms of compensation of
topographic loads

e classical: Airy, Pratt, Vening-Meinesz
modern: flexure of the lithosphere
and mantle viscosity, thermal

Fowler CMR, 2008; Turcotte & Schubert, 2002; Watts, 2001



from gravity to geodynamics
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short scale geoid anomalies (degree/order 21 -200)



gravity and earth system science

Usage Three:
geoid as physically relevant reference surface
- the geoid represents the hypothetical ocean surface at rest
- the geoid makes sea level records (and height systems)
worldwide comparable
- the geoid allows the conversion of GPS-heights
physical heights



GOCE and ocean

Objectives:

role of oceans in climate system

Step 1. mean dynamic topography (MDT) from GOCE and altimetry
Step 2: from MDT to velocities using equations of motion

Step 3: from surface circulation to circulation at depth

Some additional results

assimilation experiments



role of oceans in climate system
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over the year (after Ellis and Vonder Haar).?

Kandel, 1980



role of oceans in climate system

| heat transport in atmosphere and ocean
' ' ocean

northward transport

5 pw | of energy
Wunsch (2005)

Atmosphere + Ocean ¥

0 PW e

-5 PW

HEAT (PW) Losch, 2010

heat transport from equator region polewards:
contribution of oceans 50% (textbooks) or 20 to 30%?



role of oceans in climate system
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geodetic mean dynamic topography (MDT)

Step One

dynamic ocean

aItimﬁtry topography (DOT)
[

level surface

dynamic ocean topography (DOT) or mean dynamic topography (MDT):
deviation of the actual mean ocean surface from the geoid (hypothetical
surface of ocean at rest); size 1 to 2 m; surface circulation follows
contour lines of MDT



geodetic mean dynamic topography (MDT)

H=MDT =h-N

ellipsoid

geodetic MDT :

a small quantity to be derived from

two very different satellite techniques,

with cm-precision and free of systematic distortions



geodetic mean dynamic topography (MDT)

mean ocean surface

1992- 2010
from satellite altimetry

[source: W. Bosch, DGFI, 2011]

geoid
from six months
GOCE data




geodetic mean dynamic topography (MDT)
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geodetic mean dynamic topography (MDT)
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geodetic mean dynamic topography (MDT)

Mean ocean surface and geoid have to be expressed:
* in the same coordinate system

* in the same coordinate type

 With respect to the same reference ellipsoid
e in the same permanent tide system

and they have to be

 spectrally consistent ( a real challenge)



geodetic mean dynamic topography (MDT)

geographical domain

spectral domain



from MDT to ocean surface circulation

Step Two conservation of linear momentum
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expressed in a local (spherical) coordinate system {east, north, up}
and rotating with the earth, p pressure, Q earth angular velocity,
g gravity, F forces such as wind stress or tides

assumed:
w<<v P 2Wcosj w »0



from MDT to ocean surface circulation

Scaling the Equations: The Geostrophic A pproximation
We wish to simplify the equations of motion to obtain solutions that describe the
deep-sen conditions well away from coasts and below the Ekman boundary layer at
the surface. To begin, let's examine the typical size of each term in the equations
in the expectation that scme will be so small that they can be dropped without
changing the dominant characteristics of the solutions. For interior, deep-sea
conditions, typical values for distance L, horizontal velocity 17, depth H, Coriclis

parameter f, gravity g, and density p are:
Las 10 m Hy = 10° m I 1ot st = 10° kg/m®
’
[ 107! mys Hy == 1m p =2 10° kg/m® g == 10 m/s
il L 0l

where Hy and Hs are typical depths for pressure in the vertical and horizontal.
From these variables we can calculate typical values for vertical velocity W,
pressure P, and time T
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oo i W= T m/s =107 "m/s

P =pgH, =10°10' 10° = 107 Pa;  8p/dx = pgHy/L = 10~ *Pa/m
T=L/U=10"s

The momentum equation for vertical velocity is therefore:
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and the only important balance in the vertical is hydrostatic:
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The momentum equaticn for horizontal velocity in the r direction is:

du o du Cdu JPu o 1dp
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Thus the Caoriclis force balances the pressure gradient within one part per thou-
sand. This is called the geostrophic balance, and the geostrophic equations are:
1 1 1
——pz_r't': —@z —fu; —@z —q
p P oy p Bz
This balance applies to oceanic flows with horigontal dimensions larger than
roughly 50 km and times greater than a fow days.

scaling of the momentum equations
leads to the

geostrophic balance

Robert H Stewart:
Introduction to Physical Oceanography, 2008



from MDT to ocean surface circulation

geostrophic balance:

pressure gradient = - Coriolis acceleration
and
hydrostatic (pressure) equation



from MDT to ocean surface circulation

o=-griz T
1z _ . TH _ f
g—=-2Wsingyv or —=-—
x Tx g
gﬂ—Z:ZWsinju or M:Lu
v W g

estabishes the relationship between sea surface slope
{6H/6x , 6H/ by}
and surface ocean circulation (velocity);

the motion is perpendicular to the slope i.e. parallel to the contour lines of DOT;
the slope is proportional to the velocity
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from MDT to ocean surface circulation ;
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geostrophic surface velocities in the North Atlantic
from GOCE and altimetric MSS



from MDT to ocean surface circulation

Lfilter = 150

] . 25

F 0.2

0.1

0.0s

Geostrophic surface velocities in the area of the ACC
from a GOCE geoid surface (D/0 150)
and an altimetric MSS ( DGFI2010)
Front systems (in black) derived from oceanographic in-situ data



from ocean surface to circulation at depth

Step Three

A connection between GOCE, in-situ data (Argo, drifters...) and GRACE:
from surface circulation to ocean velocity at depth
by measuring temperature and salinity profiles
(or vertical changes of ocean pressure)

_ 190 . _91H
. flrﬂyodepm( )r(z)dz Y
19 .o



from ocean surface to circulation at depth

BAROTROPIC CONDITIONS BAROCLINIC CONDITIONS
(ISOBARIC AND ISOPYCNIC SURFACES PARALLELY —_ F,_,/F.' isoharic surfaces (ISOBARIC AND ISOPYCNIC SURFACES IMCLINED) A 7!5!3{:3110 surlaces
_,_,_,--_,-—""" =75 /, . '_H-'_-_FF'_F /
e =t -
am:

8
A B
barotropic flow: baroclinic flow:
Isobaric and isopycnic surfaces Isobaric surfaces are inclined
are parallel to isopycnic surfaces

Open University Course Team, 1998



from ocean surface to circulation at depth

drifters

deti ocean surface velocity
gel\(/)lDﬁ_IC geostrophic part + wind driven part ... |Scatterometer

baroclinic part

ARGO ﬂOatS Changes in
CTDs, STDS| temperature and

XBTs salinity
with depth

ocean circulation model (OCM)




from ocean surface to circulation at depth
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The Weddell gyre flow

In-situ temperature at 800 m depth. Composite from the ARGO data (1999

to 2010) (upper left). As result of model only (upper right), assimilation
of geodetic DOT filtered up to 241 km (lower left) and of geodetic DOT

filtered up to 121 km lower right. Janji¢, T. et al., 2011



conclusions

- Not discussed
solid earth physics: joint inversion with seismic tomography
unification of sea level records
conversion of GPS-heights to physical heights

- geodetic MDT: from space, globally consistent, no ocean data

- spatial resolution must be further improved (Rossby radius)

- spectral consistency is a challenge

- from surface circulation to circulation at depth

- GOCE provides high resolution reference surface

focus of future missions can therefore be on temporal variations

Reference on GOCE:
special issue of Journal of Geodesy, vol 85-11, 201
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from ocean surface to circulation at depth

RMS errors with respect to assimilated data
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height datum unification: principle

or

land

h(A) -N(A) =H,(A+ N, 1 topography

<8000m

h(A) - N(A) - (h(B) -N(B)) = H,(A) - H,(B) + (N, = Nyp)

C B mean
dynamic
ocean
topography (MDT)
1 to2m

reference

ellipsoid



theoretical results

Preliminary tests show:
Modeling of the omission part with EGM2008 in well surveyed

countries leaves an uncertainty of below 10cm (see: Gruber)
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solid Earth observation

most prominent observation technique in solid earth studies: seismic
tomography

Trench

AEGEAN

van der Hilst, Grand, Masters, Trampert, 2004 (?)
blue = high seismic velocity red = low seismic velocity



solid Earth observation

velocity of shear waves and compressional waves
as well as density as a function of depth
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Romanowicz, nature, 2008



from gravity to geodynamics

signal source are earthquakes (at plate boundaries)
measured with seismometers in a global network (mostly on land)
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from gravity to geodynamics

seismic tomography:
e sources: earthquakes (at plate boundaries)
» seismometers: global networks (mostly on land)
e output of inversion:
3D images of shear wave velocities v,
and/or of compressional wave velocities v,
discussion:
Inversion Is not unbiased
translation of the vg and v, to density
depends also on shear modulus and bulk modulus
l.e. It IS non unigue



from gravity to geodynamics

the difficulty of converting seismic velocities to density:
the answer: joint inversion with gravity and geoid
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Fowler, 2008



from gravity to geodynamics

seismology

gravity and geoid magnetic field

|

crustal motion

\
topography

<I20 -1M0 BB S0 0 0 B 0 4 60 B 1 120
Gl (m)

m: Lithgow-Bertelloni & Richards, 1998 in Rev. of Geophysics

laboratory research

(pressure, temperature, composition)



from gravity to geodynamics

basic equations of mantle convection

0=V .u

0=—-Vp+ V- -wVu)+ R(T — Tk

oT

tu-V7T =V?T +h
ot

conservation of mass, linear momentum and energy



from gravity to geodynamics

global geodynamic Earth model
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source: H-P Bunge



