GOCE

Gravity and steady-state Ocean Circulation Explorer

Reiner Rummel Astronomical and Physical Geodesy Technische Universität München rummel@bv.tum.de

ESA Earth Observation Summerschool ESRIN/Frascati 2012

Three Lectures:

- One ESA explorer mission GOCE: earth gravity from space
- Two Signal processing on a sphere
- Three Gravity and earth sciences

ESA: Living Planet Programme

European Space Agency Agence spatiale européenne Symbolleiste Überlappen Untereinan

Untereinani Nebeneinar

the team

earth potential fields space

gravitational field GOCE

magnetic field Swarm

The four candidate earth explorers

"Granada Report" ESA 1999

GOCE basic facts

Gravity and steady-state Ocean Circulation Explorer

- launched on March 11, 2009 (now 3¹/₂ years in orbit)
- first mission of ESA's "Living Planet programme" (followed by SMOS and CRYOSAT)
- mission goals:
 - gravity with 1 ppm (1 mGal) accuracy
 - geoid with 1 to 2 cm accuracy
 - spatial resolution 100km

(equivalent to degree/order = 200 in spherical harmonics)

• orbit characteristics

inclination 96.5° (sun-synchronous) \rightarrow polar data gaps circular

altitude 265km !

- mission extension till end of 2013
- currently re-processing of data up to July 2012

size of gravity signals

gravity (in laboratory at TU München) 9.807 246 72 m/s²

variable stationary	10 ⁰	spherical Earth
	10 ⁻³	flattening & centrifugal acceleration
	10 <mark>-4</mark>	mountains, valleys, ocean ridges, subduction
	10 ⁻⁵	density variations in crust and mantle
	10 ⁻⁶	salt domes, sediment basins, ores
	10⁻⁷	tides, atmospheric pressure
	10 ⁻⁸	temporal variations: oceans, hydrology
	10 ⁻⁹	ocean topography, polar motion
	10⁻¹⁰	general relativity

introduction to gravitation

Newton's law of gravitation:

$$F_{A} = -G \frac{m_{A}m_{B}}{|_{AB}^{2}} F_{AB} = -G \frac{m_{A}m_{B}}{|_{X_{A}}^{T} - |_{X_{B}}^{T}|^{3}} (x_{A} - x_{B})$$

Newton's second law:

$$F_A = m_A' a_A'$$

gravitational acceleration:

$$\overset{\mathsf{r}}{\partial}_{A} = -G \frac{m_{A}}{m_{A}} \overset{\mathsf{r}}{|}_{AB} \overset{\mathsf{r}}{\partial}_{AB} \overset{\mathsf{r}}{\partial}_{AB}$$

Gravitational Law of Newton

Why is it denoted gravitational gradiometry ?

$$\overset{\mathsf{r}}{a} = \overset{\mathsf{F}}{\underset{\mathsf{c}}{\mathsf{c}}} \overset{\mathsf{o}}{a_{x}} \overset{\mathsf{e}}{\overset{\mathsf{o}}{\mathsf{c}}} = \overset{\mathsf{F}}{\underset{\mathsf{c}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}} \overset{\mathsf{e}}{\mathsf{c}} V/ \overset{\mathsf{o}}{\mathsf{f}} \overset{\mathsf{o}}{\overset{\mathsf{o}}{\mathsf{c}}} = \overset{\mathsf{o}}{\underset{\mathsf{c}}{\mathsf{c}}} \overset{\mathsf{o}}{\overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}{\overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}{\overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}{\overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}{\overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}}{\mathsf{c}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}}{\mathsf{c}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}}{\mathsf{c}} \overset{\mathsf{o}}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}}{\mathsf{c}} \overset{\mathsf{o}}}{\mathsf{c}}} \overset{\mathsf{o}}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}}{\mathsf{c}} \overset{\mathsf{o}}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}}{\mathsf{c}} \overset{\mathsf{o}}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}}{\mathsf{c}} \overset{\mathsf{o}}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}} \overset{\mathsf{o}}}{\mathsf{c}}} \overset{\mathsf{o}}{\mathsf{c}}} \overset{\mathsf{o}}}{\mathsf{c}} \overset{\mathsf{o}}}{\mathsf{c}}} \overset{\mathsf{o}}}{\mathsf{c}} \overset{\mathsf{o}}}{\mathsf{c}$$

$$\begin{split} & \bigotimes [a_x] \|x - \|a_x\| \|y - \|a_x\| \|z \ddot{o} \otimes V_{xx} - V_{xy} - V_{xz} \ddot{o} \\ & \mathsf{M} = \bigvee [a_y] \|x - \|a_y\| \|y - \|a_y\| \|z \dot{+} = \bigvee [v_{yx} - V_{yy} - V_{yz} \dot{+}] \\ & \bigotimes [a_z] \|x - \|a_z\| \|y - \|a_z\| \|z \dot{\phi} - \bigotimes [v_{zx} - V_{zy} - V_{zz} \dot{\phi}] \\ & \bigotimes [u_z] \|z - \|u_z\| \|u_z\|$$

Gravitational Law of Newton

Gravitational potential: (extends over all masses) (scalar field)

$$V_{P} = G \underset{S}{\overset{\sim}{\underset{PQ}{\longrightarrow}}} d' S_{Q} \qquad [m^{2}/s^{2}]$$

Gravitational acceleration: (vector field)

1E = 1Eötvös Unit = 10^{-9} s⁻²

$$\hat{a}_{P} = \tilde{N}_{P} V = G \bigotimes_{S} a_{P} \hat{I} \tilde{N}_{P} \frac{1}{|_{PQ}} \hat{I} dS_{Q} \quad [m/s^{2}]$$

$$M_{P} = \tilde{N} \ddot{A} \tilde{N} V = G \bigotimes_{S} \int_{C} \dot{\tilde{f}} \tilde{N} \ddot{A} \tilde{N} \frac{1}{|_{PQ}} \dot{\tilde{f}} dS_{Q}$$

[S⁻²]

Gravitational Law of Newton

properties

Gravitational gradients: Nine second derivatives

$$\mathsf{M} = \P_{ij} \mathsf{V} = \overset{\mathfrak{A}}{\overset{\mathsf{V}}{\overset{\mathsf{X}}{\mathsf{y}}}} \begin{array}{c} \mathsf{V}_{xy} & \mathsf{V}_{xz} \\ \overset{\mathsf{O}}{\overset{\mathsf{v}}{\mathsf{y}}} \\ \overset{\mathsf{V}}{\overset{\mathsf{V}}{\overset{\mathsf{V}}{\mathsf{y}}}} & \mathsf{V}_{yy} & \mathsf{V}_{yz} \\ \overset{\mathsf{O}}{\overset{\mathsf{V}}{\overset{\mathsf{V}}{\mathsf{y}}}} \\ \overset{\mathsf{V}}{\overset{\mathsf{V}}{\overset{\mathsf{V}}{\mathsf{y}}}} & \mathsf{V}_{zz} \\ \overset{\mathsf{O}}{\overset{\mathsf{O}}{\overset{\mathsf{V}}{\mathsf{y}}}} \end{array}$$

- M is a secod-order tensor: (transformation property)
- M is symmetric:
- M is trace free (in vacuum) LAPLACE condition

$$\mathbf{i}^* = R \mathbf{i} R^T$$

 $\tilde{N} \tilde{N} = 0$

= conservative
(the stationary part)

$$\tilde{N} \times \tilde{N} V = \tilde{N}^2 V = -4\rho G r \gg 0$$

introduction to gravitation

satellite gravimetry:

- global
- uniform
- fast
- repeatedly (time series)

Pavlis N, et al. JGRred 2012

principle of satellite gravimetry

a satellite is a test mass in free fall in the Earth's gravitational field

Kelplerian ellipse

precessing ellipse

precessing ellipse plus "gravitational code" principle of satellite gravimetry

acceleration of

free falling test mass in gravitational field:

- from measurement of absolute motion of single mass to
- measurement of relative motion between test masses
- why?
- how many test masses?

Concept: GRACE

Concept: GOCE

principle of satellite gravitational gradiometry

single test mass located of center of mass (CoM)

acceleration difference: zero (= zero-g)

principle of satellite gravitational gradiometry

differences of gravitational acceleration of 4 test masses

acceleration differences: 1 millions of g (= micro-g)

principle of GOCE gradiometry

single accelerometer

upper electrode

test mass 4cm x 4cm x 1cm platinium-rhodium 320 g

> cage ULE-ceramics gold electrodes

GOCE gravitational gradiometry

single accelerometer

three axes gradiometer consisting of 6 accelerometers

one axis gradiometer

ULLE core mounted on

Cillsed for on-group

measurement in a rotating frame

GOCE gravitational gradiometry

two sensitive and one less sensitive direction

÷

GOCE gravitational gradiometry

principle of GOCE gradiometry

orbit and gravity field determination from GPS

independent control via satellite laser ranging (SLR)

laser retroreflectors

comparison with satellite laser ranging

GOCE orbits

RMS differences 2cm

GOCE sensor concept

star sensors DTU Copenhagen

proportional air drag compensation in flight direction by ion thrusters

GOCE sensor concept

angular control via magnetic torquing

GOCE sensor concept

thermo stabilisation of the gradiometer

Carbon sandwich structure

GOCE sensor system

ion thruster control unit

magneto-torquers

control unit

- an orbiting gravitational laboratory
- high performance of all sensors
- very different from "typical" remote sensing satellites

Level 1: from sensor data to gravity gradients

GOCE status

mission operation and special events

before September 2009	commissioning / calibration
September 2009	data to be reprocessed
October 2009	outage and calibration
November & December 2009	first 2 months cycle
January to February 11, 2010	nominal operation
February 12 – March 2	outage and calibration
March 3 to July 1	nominal operation
July 2 to September 25	outage and re-initialization
from September 25 on	nominal operation

GOCE mission performance

GOCE mission performance

trace condition (Laplace condition)

gradiometer performance calibrated vs. uncalibrated gradio

esa

GOCE geoid

Source: ESA

GOCE geoid

global map of geoid heights from only two months of data

GOCE gravity

global map of gravity anomalies (1 ppm of "g")

gravity field of Antarctica

raw measured gravitational gradients (z-component, filtered) and gravity anomalies in Antarctica

November to December 2009 Only ascending orbit arcs (polar gap in black)

 Δg from 1.5 years of GOCE data

GOCE versus EGM2008

RMS geoid differences between EGM2008 and GOCE release-3 well surveyed regions (black), problematic regions (red) and Antarctica (green)

GOCE and oceanography

mean dynamic ocean topography in North Atlantic

GOCE and oceanography

geostrophic ocean velocities from GOCE and satellite altimetry [model: DGFI2010] fronts (in black) from in-situ ocean measurements

conclusions

- GOCE is a gravitational field mission
- gravitation tells us about the geoid and about mass distribution
- it uses the principle of gradiometry (=acceleration differences) in order to counteract signal attenuation
- the gradiometer measures the components {xx}, {yy}, {zz}, {xz} in the instrument reference frame
- the gradiometer is embedded in a "laboratory", with GPS-receiver, star trackers, drag free control, angular control, calibration by shaking and high stiffness and thermal stability
- all systems work well
- satellite will be put into an even lower orbit
- currently the data are re-processed
- GOCE serves geophysics, oceanography and geodesy

