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Motivation & basic ideas
Univariate (scalar) data assimilation

Multivariate (vector) data assimilation

— 3d-Variational Method (& optimal interpolation)
— Kalman Filter (+ extended KF)

— Ensemble methods ( + particle filter)

— 4d-Variational Method

Applications of data assimilation in earth
system science



What Is data assimilation?

Data assimilation Is the technique
whereby observational data are
combined with output from a
numerical model to produce an
optimal estimate of the evolving
state of the system.



What are the benefits of
data assimilation?

Quality control

Combination of data

Errors in data and in model

Filling In data poor regions
Designing observing systems
Maintaining consistency

Estimating unobserved quantities
Parameter estimation in models *****



The Data Assimilation Problem

How can we combine noisy measurements of a system
with output from an imperfect numerical model to get
the best estimate of the (evolving) state of the system?



Answer:
Use Bayes’ Theorem with the following
Information:

The observations

Their errors

Predictions by a numerical model of the system
The errors in these predictions

The key idea Is to combine observations with predictions
giving more weight to information with the least error.
But errors may not be well known! Internal consistency
checks on our state estimates are possible, but also
need independent (unassimilated data).



Conditional Probability & Bayes’ Theorem

P(A,B) = p(A|B)p(B) = p(B|A)p(A),
where A and B are two random events

| . _ p(BIA)p(A)

(x| y) = P 1X0P0)

p(y)
where X is a state variable of the system we wish to estimate,

and z is a measurement of that variable.

So if we have some prior information about p(x),we can update that information

with an observation y to get p(x | y), the probability that the system variable has value x
given that a measurement z of that variable has been made. We call it the W




(& Py iy Errrors everywhere
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All significant sources of uncertainty should be accounted for in data assimilation

Example 1 — repeated observations of air temperature
Random errors:
« background (a-priori) errors X XX X000 XX X X X
* observation errors
» model errors
* representivity errors

y (T observations)

unbiased
truth thermometer 1

, _ biased

Syster_natlc_errors. thermometer T
* biases in background : truth
* biases in observations

* biases in model — :
Example 2 — representivity errors due to model grid

Fiz Pz
&® .




pdf evolved by

nonlinear model
(Fokker-Planck equation)

The state estimation
problem

Update with
observations at
time k + 1 using
Bayes’s theorem

nonlinear model

~7

Too expensive to evolve the full
pdf. Estimate the evolution of
the low order moments:

N.B. The variance (measure of model
error) is often assumed to evolve
typically mean and variance. according to a linearized version of the
This is equivalent to model. This may be a serious limitation
assuming Gaussian statistics. for data assimilation.



State Estimation

A formula (or algorithm) to estimate the value of a state variable x
Is called an estimator. (Note: the estimator is a random variable,
because it is expressed in terms of random variables, such as y.)

We often derive our estimator by constructing a COST FUNCTION, J,
which measures the fit of our state variable(s) x to the data.
Then we minimize this cost function to obtain the “optimal” x.

For typically used cost functions, our estimator is:

X = E[x |y]= 0 xp(x | y)dx
the mean of x given y.

For Gaussian statistics, we get our estimator x as the x that maximizes

p(x | y) (the mode) or which minimizes J=-In_p(X | y).




A Simple Example

Assume we have an observation x, of an unknown variable Xx.
Assume we have some prior information that the value of x is x, .
Assume we know the error statistics of these quantities (the error variances).

p(x | X,) ~ p(X, | X)p(x) = ex‘:' _)zuex‘:’ - %,)* Y
R TN EJ/ T 25t EJ/

|( _X)U

300 = Inp(x ) = £ gﬁ?{;

The bigger the variance, the less weight is given to the information.

(To get an equals sign in the above, divide by the sum of the weights. )



The Observation Operator

The observations (observation vector) are in general not direct measurements of
the state variables (state vector), e.g. in remote sensing from space.

In data assimilation, we need to compare the observation vector with the

state vector. The observation operator allows this.

It is @ mapping from state space to,observation space.

mod _
y™" =h(x)
Y Y O Y X — - d t
P
Data assimilation algorithms often use the matrix
evaluated generally at a state forecast by the model\> H = ’/h
(background state or first-guess state) ﬂx

X=Xg



R ——— Three types of estimation problem
“““““““““““““““ (estimate desired at time t)

span of available observations

filtering (e.g. Kalman filter)

smoothing (e.g. variational DA)

prediction

—+ f———




@uracnas  Sequential Data Assimilation
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This is an example of a ‘filter

Data assimilation has:
* prediction stages (x; = ‘forecast’, ‘prior’, ‘background’) (extrapolation)

* analysis stages (x,) (interpolation)




DATA ASSIMILATION SYSTEM

Error Statistics

model

Iobservations



3d-Variational Data
Assimilation



Multivariate Case

state vector Xx(t) =

&Y, 0

observation vector y(t) = gyz :
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Errors



The Error Covariance Matrix
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Background Errors

 They are the estimation errors of the
background state (a model forecast):

e average (bias) <K @b
e covariance

B=<(g,-<¢, >)(g-<¢ > >



Background error “Iin
observation space”

If y™ = Hx, where H is a matrix, then

the error covariance for y™ is given by:

C ... =HBH'

y



Observation Errors

They contain errors in the observation
process (instrumental error), errors In
the design of H, and
“representativeness errors”, I.e.
discretizaton errors that prevent X from

being a perfect representation of the
true state.

é,o:y_H(X)

R=<(g,-<e,>)(e,-<¢,>)" >



The Bayesian view of data assimilation

Bavyes' Theorem Rev. Thomas
Bayes
PG, = PCr'Ii'r‘JPGf)} Pt 5 POIDPG) 17021761
PG =PGIDPE| PG
= P®PEG | 3)
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1 ~ 1 _
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Maximum likelihood = Minimum penalty, J

T[]
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X4 = ﬂn:u’.n.f = "analysis"



Minimising the cost function

The problem reduces to a (badly conditioned) optinmsation problem in 10’-dimensional phase space.

1 1> -
JE = 5G - %) B G - 3 + S(h[E - 3R GE - 3)

* Descent algonithms mimmize J iteratively.

* They need the local gradient, V3J of the cost function at each iteration.

* The adjoint method 1s used to compute the adjoint.

e The curvature ' (ak.a. inverse Hessian, [?%f}l) at &4 indicates the error statistics of the analysis.

* A very badly conditioned problem.



Remarks on 3d-VAR

Can add constraints to the cost function,
e.g. to help maintain “balance”

Can work with non-linear observation
operator H.

Can assimilate radiances directly
(simpler observational errors).

Can perform global analysis instead of
Ol approach of radius of influence.



Optimal Interpolation
(the BLUE)

e BLUE = Best linear unbiased estimate

« Algorithm derived as a special case of
3D-var.



Algebraic minimization of the cost function
Under simplified conditions the cost function can be mummized algebraically.

Assume that the linearization of the forward model 1s reasonable
h[¥] = h[is] + HE - 3p)

(- % B - %) + ~(HQE - 1) — (v - Al R HGE - 3 - (v — hE)

b | =

T3] =

1. Calculate the gradient vector
!f;.-rlr L';I]

QIIEIN

2_The special X that has zero gradient mimimizes J (this cost function 1s quadratic and convex)
?1-’1:“ =0
i =3+ (B + HRH'HR'@ - hlws)
%5 + BH (R + HBH) ' 5 — A [x5])

This is the OI formula with the BLUE!



BLUE Estimator (recursive)

The BLUE estimator or “analysis” is given by:

X, =X, +K(y - h(x,))
K =BH"(HBH" +R)™

The B matrix plays a key role in determining

the structure of the analysed fields.

Matrix inverses expensive to compute so
reduce dimension by “local analysis”

We can derive an explicit expression for the
analysis error covariance matrix:

A=(l-KH)B



Assumptions Used in BLUE

e Linearized observation operator:

h(X) - h(x,) = H(X - X,)

e Errors are unbiased:

<X, =-X>=<Yy-h(x)>=0

e Errors are uncorrelated:

< (X, - X)(y = h(x))T >=0



Innovations and Residuals

« Key to data assimilation is the use of
differences between observations and
the state vector of the system

- Wecal Y — h(Xb) the innovation

- Wecal Y — h(Xa) the analysis

residual
Give important information



Ozone at 10hPa, 12Z 23rd Sept 2002

Analysis
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MIPAS observations 6 day model forecast



Ozone values /ppmv

3D variational data assimilation - ozone at 10hPa
Xy

First guess at 18:00:00 1-Sep-2002



Ozone values /ppmv

3D variational data assimilation - ozone at 10hPa

y - h(Xb)

Obs - Fg at 18:00:00 1-Sep-2002

Xy

First guess at 18:00:00 1-Sep-2002
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Ozone values /ppmv

3D variational data assimilation - ozone at 10hPa

y - h(Xb)

Obs - Fg at 18:00:00 1-Sep-2002

Xy

First guess at 18:00:00 1-Sep-2002

K(y -h(x,))
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Ozone values /ppmv

The data assimilation cycle: ozone at 10hPa

Xy

First guess at 18:00:00 1-Sep-2002

X, + K(y -h(x,))

y - h(Xb)

Obs - Fg at 18:00:00 1-Sep-2002
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Choice of State Variables and
Preconditioning

e Free to choose which variables to use to
define state vector, x(t)

 We'd like to make B diagonal
— may not know covariances very well

— want to make the minimization of J more
efficient by “preconditioning”: transforming
variables to make surfaces of constant J
nearly spherical in state space



Cost Function for Correlated Errors

X




X

Cost Function for

Uncorrelated Errors




X

Cost Function for
Uncorrelated Errors
Scaled Variables
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