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– 3d-Variational Method (& optimal interpolation) 
– Kalman Filter (+ extended KF) 
– Ensemble methods ( + particle filter) 
– 4d-Variational Method 

• Applications of data assimilation in earth 
system science 
 



What is data assimilation? 

Data assimilation is the technique 
whereby observational data are 
combined with output from a 
numerical model to produce an 
optimal estimate of the evolving 
state of the system. 



What are the benefits of  
data assimilation? 

• Quality control 
• Combination of data 
• Errors in data and in model 
• Filling in data poor regions 
• Designing observing systems 
• Maintaining consistency 
• Estimating unobserved quantities 
• Parameter estimation in models ***** 



The Data Assimilation Problem 

How can we combine noisy measurements of a system 
with output from an  imperfect numerical model to get 
the best estimate of the (evolving) state of the system?   



Answer: 
Use Bayes’ Theorem with the following 
information: 
 • The observations 
• Their errors  
• Predictions by a numerical model of the system 
• The errors in these predictions 

 
The key idea is to combine observations with predictions 

giving more weight to information with the least error.  
But errors may not be well known! Internal consistency 
checks  on our state estimates are possible, but also 
need independent (unassimilated data).  

 
 



Conditional Probability & Bayes’ Theorem  

 

p(A,B) = p(A | B)p(B) = p(B | A)p(A),
where A and B are two random events

Bayes'  Theorem:           p(A | B) =
p(B | A)p(A)

p(B)
                  

  \ p(x | y) =
p(y | x)p(x)

p(y)
,

where x is a state variable of the system we wish to estimate, 
and z is a measurement of that variable. 

So if we have some prior information about p(x),we can update that information 
with an observation y to get p(x | y),  the probability that the system variable has value x
given that a measurement z of that variable has been made. We call it the posterior pdf.



Errrors everywhere 

Random errors: 
• background (a-priori) errors 
• observation errors 
• model errors 
• representivity errors 

 
 
Systematic errors: 

• biases in background 
• biases in observations 
• biases in model 

 

All significant sources of uncertainty should be accounted for in data assimilation 

Example 1 – repeated observations of air temperature  

y   (T observations) 

truth 
unbiased 
thermometer 

truth 

biased 
thermometer 

Example 2 – representivity errors due to model grid 



 

 x k +1
f = M( ˆ x k ),     

nonlinear model
 

pdf evolved by 
nonlinear model

The  state estimation 
problem (Fokker-Planck equation) 

Too expensive to evolve the full 
pdf. Estimate the evolution of 
the low order moments: 
typically mean and variance. 
This is equivalent to 
assuming Gaussian statistics.  

Update with 
observations at 
time k + 1 using 
Bayes’s theorem 

 

ˆ x k

N.B. The variance (measure of model 
error) is often assumed to evolve 
according to a linearized version of the 
model. This may be a serious limitation 
for data assimilation. 



State Estimation 
A formula (or algorithm) to estimate the value of a state variable x  
is called an estimator. (Note: the estimator is a random variable,  
because it is expressed in terms of random variables, such as y.) 
 
We often derive our estimator by constructing a COST FUNCTION, J,   
which measures the fit of our state variable(s) x to the data.  
Then we minimize this cost function to obtain the “optimal” x.  
 
 For typically used cost functions, our estimator is:  
 
 
                                        
 
For Gaussian statistics, we get our estimator     as the x that maximizes 
               (the mode) or which minimizes J=-ln               . 
 
  

 

ˆ x = E[x | y] = xp(x | y)dxò
the mean of x given y.  
 
  

 

ˆ x 

 

p(x | y)

 

p(x | y)



A Simple Example 

 

Assume we have an observation xo of an unknown variable x. 
Assume we have some prior information that the value of x is xb .
Assume we know the error statistics of these quantities (the error variances). 

p(x | xo) ~ p(xo | x)p(x) = exp -
(xo - x)2
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J(x) = -ln p(x | xo) ~ (xo - x)2
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Find x such that J(x) is a minimum. This x is our estimate of x. Call it ˆ x .

ˆ x ~ xo

s o
2 +

xb

s b
2 .    Easy to show from form of p(x | x0) that 1

ˆ s 2
=
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2 +
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2

The bigger the variance, the less weight is given to the information. 

The precision of the estimate is better than those of the observation or background. 

(To get an equals sign in the above, divide by the sum of the weights. )



The Observation Operator 
The observations (observation vector) are in general not direct measurements of  
the state variables (state vector), e.g. in remote sensing from space.  
In data assimilation, we need to compare the observation vector with the 
 state vector. The observation operator allows this. 
 It is a mapping from state space to observation space.  

 

ymod = h(x)

x x x x x x 

 

Ri = Bi(T(p))ò dt
dp

Data assimilation algorithms often use the matrix  
evaluated generally at a state forecast by the model  
(background state or first-guess state) 

 

H =
¶h
¶x x =x B



Three types of estimation problem  
     (estimate desired at time t) 

t 

t 

t 

filtering (e.g. Kalman filter) 

smoothing (e.g. variational DA)  

prediction 

span of available observations 



Sequential Data Assimilation 
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time 

= observation 

xtrue(t) 
(unknown) 

xf(t1) 
xa(t1) 

xf(t2) 

xa(t2) 

xf(t3) 

This is an example of a ‘filter’ 

Data assimilation has: 
• prediction stages (xf = ‘forecast’, ‘prior’, ‘background’) 
• analysis stages (xa) 

(extrapolation) 
(interpolation) 



Numerical Model 
DAS 

DATA ASSIMILATION SYSTEM 
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Error Statistics 



3d-Variational Data 
Assimilation 



Multivariate Case 
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Errors 



The Error Covariance Matrix 
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Background Errors 

• They are the estimation errors of the 
background state (a model forecast): 
 
 

• average (bias) 
• covariance 

 
 
 

eb = xb - x
>< be

 

B =< (eb - < eb >)(eb - < eb >)T >



Background error “in 
observation space” 

If                     where     is a matrix, then 
the error covariance for         is given by: 

 

ymod = Hxb H

 

ymod

 

Cy mod = HBHT



Observation Errors 
• They contain errors in the observation 

process (instrumental error), errors in 
the design of    , and 
“representativeness errors”, i.e. 
discretizaton errors that prevent      from 
being a perfect representation of the 
true state.  

H

 

x

 

eo = y - H(x )
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Remarks on 3d-VAR 

• Can add constraints to the cost function, 
e.g. to help maintain “balance” 

• Can work with non-linear observation 
operator H.  

• Can assimilate radiances directly 
(simpler observational errors). 

• Can perform global analysis instead of 
OI approach of radius of influence. 



Optimal Interpolation  
(the BLUE) 

 
 

• BLUE = Best linear unbiased estimate 
• Algorithm derived as a special case of 

3D-var. 



 



BLUE Estimator (recursive) 

• The BLUE estimator or “analysis” is given by: 
 
 

 
• The       matrix plays a key role in determining 

the structure of the analysed fields.  
• Matrix inverses expensive to compute so 

reduce dimension by “local analysis” 
• We can derive an explicit expression for the  

analysis error covariance matrix: 
 
 

  

 

x a = xb + K(y - h(xb))
K = BHT (HBHT + R)-1

BKHIA )( -=
 

B



Assumptions Used in BLUE 
• Linearized observation operator: 

 
 

       
• Errors are unbiased:  
 
 
• Errors are uncorrelated: 

 
 

 

h(x) - h(xb) = H(x - xb)

 

< xb - x >=< y - h(x) >= 0

 

< (xb - x)(y - h(x))T >= 0



Innovations and Residuals 

• Key to data assimilation is the use of 
differences between observations and 
the state vector of the system 
 

• We call                               the innovation 
 

• We call                               the analysis 
                                              residual 

 

y - h(xb)

 

y - h(x a )

Give important information  



MIPAS observations 6 day model forecast 

Analysis 

Ozone at 10hPa, 12Z 23rd Sept 2002 



bx
3D variational data assimilation - ozone at 10hPa 



bx )( bh xy -
3D variational data assimilation - ozone at 10hPa 



bx )( bh xy -

))(( bh xyK -

3D variational data assimilation - ozone at 10hPa 
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The data assimilation cycle: ozone at 10hPa 



Choice of State Variables and 
Preconditioning 

• Free to choose which variables to use to 
define state vector, x(t) 

• We’d like to make B diagonal 
– may not know covariances very well  
–  want to make the minimization of J more 

efficient by “preconditioning”: transforming 
variables to make surfaces of constant J 
nearly spherical in state space 
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Cost Function for Correlated Errors 



x2 

x1 

Cost Function for  

Uncorrelated Errors 
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Cost Function for 
Uncorrelated Errors            

Scaled Variables 
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