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Amongst the most important environmental changes ex- Qe - Leaf Physics
perienced by terrestrial vegetation over the last century Shortwave  Longwave repeon v by |
has been the increase in ambient carbon dioxide (CO3) . R ™ Formation Leaf Energy & | Boundary Layer
concentrations, with a projected doubling in COz from , | Balance Conductance
pre-industrial levels by the middle of this century. Accu- | Emm [f: O’lfl-rc'(w‘ 4 , Sh
rate prediction of land-atmosphere exchange of mass,
energy, and momentum requires the consideration of
plant biochemical, ecophysiological and structural accli- Biochemical Stomatal
mation to modifications of the ambient environment. ' ’ Photosynthesis Conductance
Here we present work that utilizes a detailed, vertically ‘ | | | | A, T
resolved canopy-atmosphere exchange model (MLCan)
to examine the responses of central US soybean and maize canopies to elevated CO:..

Free Air Carbon Enrichment (FACE) technology has provided significant insight into the functioning
of vegetation in natural conditions under elevated CO2. Observations from the SoyFACE experimental * Biochemical Photosynthesis (Farquhar-based)

facility (Savoy, lllinois, USA) guide this work by providing estimates of changes in leaf states and An=1(T;, C; Qa») for C3 Soybean

fluxes under elevated CO: (550 [ppm]) for both soybean and maize. SoyFACE observations are rou- < An = (T}, Qas) for C4 Maize
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Coupled leaf-level processes include:

: . : : : (CO:2 saturating mechanism of C4 pathway)
tinely made for canopy-top foliage, leaving open the question of how vegetation responses scale to the e Stomatal Conductance (Ball-Berry)
canopy. We address this question here. g = (s, RH:, Cy)
Observations at SoyFACE indicate a 10% increase in leaf area (structural acclimation, SA), a 5% e Leaf Energy Balance
reduction in Rubisco carboxylation capacity (biochemical acclimation, BA), and a variable reduction of 11 = 1(gs, gon, Ta, ea)
stomatal conductance for soybean (C3) due to elevated CO: (ecophysiological acclimation, EA). Maize * Leaf Boundary Layer Conductance
(C4) has been shown to only experience ecophysiological acclimation. gwn = f(Us, leaf dimensions)
A set of simulations are conducted to untangle the influences of observed levels of biochemical, § MLCan, a multi-layer canopy-root-soil system model, re-

structural and ecophysiological acclimation solves the radiative, scalar and foliage micro-environment
Maize (Canopy Top Leaves) through a closed plant canopy, including:

| | | | Direct stimulation of C3 photosynthesis § ¢+ Shortwave and longwave radiation attenuation and T Datviallh
Iresults in a 20-30% increase in leaf- § emission JI | @
|level (canopy top) photosynthesis for - Direct (sunlit foliage) and diffuse (sunlit and shaded fo- Normalized LAD Profil [’
soybean, relative to a negligible In- liage) radiation considered separately w ——

crease for maize. - Longwave sources from sky, soil and through canopy
' (foliage; sunlit and shaded at different temperatures)

4+ Scalar concentrations (CO2 and vapor), air temperature

. and wind rofil : s s
These synthetic A-C: curves demon- d speed Profiies s . | " Root Fraction

| strate photosynthetic sensitivity of C3 + Capopy interception of precipitation, dew formation o + oo o oot 01
_ . 4+ Soil hydrology, root water uptake and stomatal sensitivity Soybean Funcion
soybean leaves to ambient CO2 con- -

© Maize Data [Bunce et al., 2004]
| centration. The CO: saturating mecha- to root pressure potential (Figure to right, panel ¢)

| nism of C4 maize leaves makes them . L . o
. " . Requires specification of vertical distributions of canopy
insensitive to ambient CO2 concentra-
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Impacts of Structural and Ecophysiological Acclimation Within-Canopy and Canopy-Integrated Flux Impacts Summary

ASW . (Soybean) [Wm?] Increases in 4, and reductions in LE for soybean are localized j For soy (C3), CO: fertilization and acclimations accounted for mean
& - , around the LAI maximum under elevated COo. 4, increase through | 30% increase in CO2 uptake and 7% reduction in transpiration. Im-
maize canopy is negligible (note difference in scales for soy and | pact of greater L4/ was to reduce net CO2 uptake due to greater
maize plots), with LE reduction under elevated CO2 much larger and | respiration losses. Maize (C4) had a negligible increase in CO2 up-
more uniformly distributed. Increase in 4, for soy due to CO: fertili- | take, but a 19% net reduction in transpiration, with implications for
zation partially offsets reduction in LE due to stomatal closure. interactions with daytime boundary layer and climate.
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For soy canopy, BA had no effect as photosynthesis is RuBP- | EE— = ALE:
regeneration limited at high CO2. SA partially offset EA to lessen re- = Y A
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