

The Role of Vegetation Acclimation in Eco-Hydrologic Response to Global Change

Darren Drewry: Max Planck Institute for Biogeochemistry, Jena, Germany Praveen Kumar, Murugesu Sivapalan: Dept. of Civil Eng., Univ. of Illinois, USA Steve Long, Carl Bernacchi: Dept of Plant Biology, Univ. of Illinois, USA Xing-Zhong Liang: Dept of Atmospheric Science, Univ. of Illinois, USA

Overview

Amongst the most important environmental changes experienced by terrestrial vegetation over the last century has been the increase in ambient carbon dioxide (CO₂) concentrations, with a projected doubling in CO₂ from pre-industrial levels by the middle of this century. Accurate prediction of land-atmosphere exchange of mass, energy, and momentum requires the consideration of plant biochemical, ecophysiological and structural acclimation to modifications of the ambient environment. Here we present work that utilizes a detailed, vertically resolved canopy-atmosphere exchange model (MLCan)

to examine the responses of central US soybean and maize canopies to elevated CO₂.

Free Air Carbon Enrichment (FACE) technology has provided significant insight into the functioning of vegetation in natural conditions under elevated CO₂. Observations from the SoyFACE experimental facility (Savoy, Illinois, USA) guide this work by providing estimates of changes in leaf states and fluxes under elevated CO₂ (550 [ppm]) for both soybean and maize. SoyFACE observations are routinely made for canopy-top foliage, leaving open the question of how vegetation responses scale to the canopy. We address this question here. Observations at SoyFACE indicate a 10% increase in leaf area (*structural acclimation*, SA), a 5% reduction in Rubiston, carboxylation capacity (*biochemical acclimation*, BA), and a variable reduction of stomatal con I for soybean (C3) due to elevated CO₂ (*ecophysiological acclimation*, EA). Maize (C4) has be the shown to only experience ecophysiological acclimation.

MLCan Overview

MLCan, a multi-layer canopy-root-soil system model, re-

solves the radiative, scalar and foliage micro-environment

Shortwave and longwave radiation attenuation and

- Direct (sunlit foliage) and diffuse (sunlit and shaded fo-

- Longwave sources from sky, soil and through canopy

(foliage; sunlit and shaded at different temperatures)

✦ Scalar concentrations (CO₂ and vapor), air temperature

through a closed plant canopy, including:

liage) radiation considered separately

A set of simulations are conducted to unterrition influences of observed levels of biochemical, structural and ecophysiological acclimation

Maize (Canopy Top Leaves)

C, [ppm]

\C

nation

Impacts of Structur

and wind speed profiles These synthetic A-Ci curves demon- Canopy interception of precipitation, dew formation strate photosynthetic sensitivity of C3 ✦ Soil hydrology, root water uptake and stomatal sensitivity soybean leaves to ambient CO2 conto root pressure potential (Figure to right, panel c) centration. The CO₂ saturating mechanism of C4 maize leaves makes them Requires specification of vertical distributions of canopy insensitive to ambient CO₂ concentraleaf area and root biomass (Figure to right, panels a and b) ítions.

Soybean

 Biochemical Photosynthesis (Farquhar-based) Root Water Uptake $A_n = f(T_l, C_i, Q_{abs})$ for C3 Soybean $A_n = f(T_l, Q_{abs})$ for C4 Maize (CO₂ saturating mechanism of C4 pathway) • Stomatal Conductance (Ball-Berry) $g_s = f(A_n, RH_s, C_s)$ • Leaf Energy Balance $T_l = f(g_s, g_{bh}, T_a, e_a)$ • Leaf Boundary Layer Conductance $g_{bv,h} = f(U_s, \text{ leaf dimensions})$

Within-Canopy and Canopy-Integrated Flux Impacts

Increases in A_n and reductions in LE for soybean are localized around the LAI maximum under elevated CO₂. A_n increase through

emission

Summary

For soy (C3), CO₂ fertilization and acclimations accounted for mean 30% increase in CO₂ uptake and 7% reduction in transpiration. Im-

and Ecophysiologic

 ΔSW_{abs} (Soybean) [W m⁻²]

<u>Top Panel</u>: Soybean *LAI* augmentation results in mean noon-time increases in shortwave absorption of 15 [W m⁻²] concentrated in the upper canopy. This results in shading of lower canopy, where foliage can more efficiently utilize radiation.

Bottom Panel: Structural acclimation also results in a reduced energy flux into the soil, with implications for soil biogeochemical reactions.

maize canopy is negligible (note difference in scales for soy and maize plots), with *LE* reduction under elevated CO₂ much larger and more uniformly distributed. Increase in A_n for soy due to CO₂ fertilization partially offsets reduction in *LE* due to stomatal closure.

For soy canopy, BA had no effect as photosynthesis is RuBPregeneration limited at high CO₂. SA partially offset EA to lessen reduction in LE. No CO₂ fertilization for C4 maize resulted in large net change in energy dissipation from *LE* to *H* and longwave emission.

All Changes

Soybean

pact of greater *LAI* was to reduce net CO₂ uptake due to greater respiration losses. Maize (C4) had a negligible increase in CO₂ uptake, but a 19% net reduction in transpiration, with implications for interactions with daytime boundary layer and climate.

Immediately following a rain event (DOY 225) during the 2002 soybean growing season, greater CO_2 uptake (Δ = Elevated - Current CO₂ scenarios), a shift in energy partitioning from *LE* to *H*, and soil moisture conservation are apparent under elevated CO₂. As the current CO₂ crop experiences water stress (DOYs 242-251), the

elevated CO₂ crop remains unstressed, using the moisture it has conserved (ecophysiological acclimation) for gas exchange.

References

Bunce (2004) Carbon Dioxide Effects on Stomatal Responses to the Environment and Water Use by Crops Under Field Conditions. Oecologia, 140(1), 1-10.

Drewry, D.T., P. Kumar, S. Long, C. Bernacchi, X.-Z. Liang, M. Sivapalan (in Review) Ecohydrological Responses of Dense Canopies to Environmental Variability, Part 1: Interplay Between Vertical Structure and Photosynthetic Pathway. *JGR-Biogeosciences*.

Drewry, D.T., P. Kumar, S. Long, C. Bernacchi, X.-Z. Liang, M. Sivapalan (in Review) Ecohydrological Responses of Dense Canopies to Environmental Variability, Part 2: Role of Acclimation Under Elevated CO2. JGR-Biogeosciences.

Drewry, D.T., P. Kumar and S. Long (in Preparation) Lifting the Lid Off of FACE: Agro-Ecosystem - Boundary Layer Interactions in an Enriched CO₂ Environment.

Long, S., E.A. Ainsworth, A.D.B. Leakey, J. Nosburger and D.R. Ort (2006) Food For Thought: Lower-Than-Expected Yield Stimulation with Rising CO2 Concentrations. Science 312 (5782).

Jena

MPI-BGC