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Abstract Objective

The spectral performance of airborne imaging spectrometers cannot be - Develop an independent method for the monitoring of instrument
assumed to be stable over a whole flight season given the environmental spectral characteristics in-flight.

stresses present during flight [1-4]. We present a new method for the - Study the system performance as a function of environmental
assessment of instrument spectral performance in-flight, using as parameters.

reference the performance characterized onground [5]. APEX, an

airborne dispersive pushbroom imaging spectrometer, uses an onboard Methods

In-Flight Characterization (IFC) facility that allows monitoring the  The spectral shift is estimated by performing a feature-wise matching of

sensor’s spectral performance stability on-ground and in-flight by tracking the IFC ground reference spectrum and IFC flight spectra and maximizing
instrument-induced movements of spectral features. Spectral features a cost function with respect to the position of a sliding window.

are obtained by illuminating with an internal lamp a series of spectral
filters. Performance deviations are investigated as a function of
environmental parameters thanks to the acquisition of housekeeping
information, co-registered on board with the image and calibration data.
Correlations between instrument performances and environmental
parameters provided the needed input for an additional engineering
iteration aimed at minimizing these effects.

The In-Flight Characterization facility (IFC)

Feature-matching is repeated for all detector pixels in the across-track
dimension so as to obtain an across-track shift profile (i.e. differential
smile). Two indices derived from a linear LSM are used to synthesize
instrument spectral performance as compared to the onground reference
performance. These are the mean spectral shift (mss) and the rotation
(angular coefficient) index.
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Fig. 3 Spectral shift estimated for each across-track pixel using one filter absorption feature. The shift profile represents the
deviations of one acquisition in-flight compared to the reference acquisition onground.

Data were collected in-flight and as part of two ground experiments aimed
at investigating the influence of individual environmental parameters. In
g; gﬁgigafgmlzpnfﬁpjfr the two ground experiments pressure and temperature conditions

(9) Filter wheel with 3 band- Fig. 1 In-Flight Characterization (IFC) facility onboard the APEX imaging spectrometer. resembllng those encou ntered |n—ﬂ|ght were SlmUIated, reSpeCtlvely
pass filters and 1 NIST
certified spectral filter
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Conclusions

Thanks to the onboard characterization facility, instrument spectral
performance deviations could be quantified and traced back to their main
| | causes, namely differential pressure and temperature variations.
Instrument engineering iterations were carried out to counteract these

Fig. 2 Transmission of the spectral filters mounted on the In-Flight Characterization (IFC) facility onboard eﬁ'—'e CtS
of the APEX imaging spectrometer (SRM NIST: black, BP700: red, BP1000: blue, BP2218: green). .
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The different symbols represent different flight days.
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