

Florian Harnisch¹, Martin Weissmann¹, M. Wirth¹, C. Cardinali², P. Bauer²

¹ Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany ² European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK

935.4

935.2

935.6

Vacuum Wavelength (nm)

Vacuum Wavelength [nm] Fig. 1 H2O-absorption lines used for the WALES demonstrator. Absorption cross section data calculated from HITRAN 2006 [8] for sea level conditions (*solid line*) and at 10 km altitude (*dashed line*) using the US-standard atmosphere. Possible wavelengths of operation are indicated by *arrows*, where the current system is able to use four at a time. *From Wirth et al 2009*

935.8

936.0

water vapour absorption band

- no calibration of system
- no system constants need to be specified
- high accuracy measurements (error ~ 5-7 %)
- DIAL equation: $n \approx \frac{1}{2\Delta\sigma\cdot\Delta R} ln(\frac{P_{off}(r+\Delta R/2)\cdot P_{on}(r-\Delta R/2)}{P_{on}(r+\Delta R/2)\cdot P_{off}(r-\Delta R/2)}$
- resolution: vertical ~300 m, horizontal ~ 30 s (4 - 7 km)

The assimilation input variable precipitable water content (PWC)

- observations are assimilated as water content layer observations in kg m⁻²
- observation operator H available from the SBUV (solar backscattering UV) instrument
- number density of water molecules N_w (m⁻³) \rightarrow absolute humidity M_w (kg m⁻³): $M_w(z) = N_w(z) \cdot \frac{m_{H_2O}^*}{N_A} \cdot 10^{-3}$ $m_{H_2O}^* = 18.015 \text{ g mol}^{-1}$ $N_A = 6.022 \cdot 10^{23} \text{ mol}^{-1}$
- the variable of PWC is the absolute humidity multiplied by a vertical thickness: $PWC(z) = M_w(z) \cdot \Delta z$
- vertical thickness is distance between model levels (~250 m in the lower troposphere and ~ 425 m in the upper troposphere

Departure statistics of passive dropsonde data

• difference between dropsonde specific humidity and model first-guess and analysis with and without assimilated PWC observations

first-guess dep without DIAL	BIAS = - 0.085 g/kg	analysis dep without DIAL	BIAS = 0.097 g/kg
first-guess dep with DIAL	STD.DEV = 1.38 g/kg	analysis dep with DIAL	STD.DEV = 1.23 g/kg
	BIAS = -0.125 g/kg STD.DEV = 1.39 g/kg		BIAS = -0.133 g/kg STD.DEV = 1.33 g/kg

The THORPEX-Pacific Asian Regional (T-PARC) campaign 2008

Doppler lidar

Measurement equipment of the DLR Falcon:

- Dropsonde system (u, v, T, rh, p)
- 2 µm Doppler wind lidar
- four-wavelength water vapour DIAL

DLR Falcon objectives:

- typhoon targeting
- extratropical transition of tropical cylcones
- lidar observations for NWP

DLR Falcon operations 23 August - 3 October 2008 in Japan 25 research flights, 93 flight hours in total

DLR Falcon funding institutions DLR (Germany), NSF (USA), JMA (Japan) Forschungszentrum Karlsruhe (Germany), NIMR (Korea), Environment Canada, EUCOS

The operational ECMWF model and assimilation system

- spectral resolution of T799 and 91 vertical levels
- 4D-variational data assimilation system with a 12-hourly assimilation window and an incremental formulation for the minimisation process: nonlinear 'outer loop' update (T799 with 91 levels) and

linearised 'inner loop' minimisation (three runs: T95, T159 and T255 with 91 levels)

Example case 11 September 2008:

- flight track North of Typhoon Sinlaku
- water vapour transport towards the Northeast
- TCS 37 shows a thick layer of moist air
- large scale structure of the observations are also evident in the model first-guess
- differences in smaller scale structures
- broad areas where the observations have less PWC than the model first-guess
- information content is used successfully
- small scale features can not be resolved in the current 4D-Var data assimilation system

observation PWC

first-guess departure = observation PWC

absorption lidar WALES: system design and performance. Appl. Phys. B, 96, 201-213.

Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen

http://www.dlr.de/ipa/

Florian.Harnisch@dlr.de