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Historical perspective

• Motivation for the development of 3D-Var

– Improve our capacity to use new types of observations 
particularly satellite radiances (Eyre, 1989; Thépaut and Moll, 
1990)

– New background-error statistics models without data selection

– Extension to 4D-Var (Talagrand and Courtier, 1987)

• NCEP (1992), ECMWF (1996), Météo-France and CMC 
(1997), MetOffice (1999)

• HIRLAM and ALADIN (Météo-France) 
(for limited-area models)
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Historical perspective (2)

• Dual 3D-Var (Courtier, 1997)
– NASA's Global Modeling and Assimilation Office (GMAO) (Cohn  et 

al., 1998)

– Naval Research Laboratory (Daley and Barker, 2000)

• 4D-Var
– ECMWF (1997), Météo-France (2000), MetOffice (2004), JMA 

(2005), Meteorological Service of Canada (2005), NRL (2009)
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Plan of presentation
• 3D-Var

– Introduction of the incremental formulation

– First-Guess at Appropriate Time (FGAT)

• 4D-Var 
– Extension from 3D to 4D-Var

– Incremental formulation

– Evaluation of the impact of the first implementation of 4D-Var at 
the Meteorological Service of Canada

• Current issues
– Comparaison of 4D-Var with the Ensemble Kalman filter

– Hybrid formulation

– Taking into account model error: the weak-constraint 4D-Var
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The variational problem

• Example:
o Observation and background error have Gaussian distributions
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o p(y|x) is Gaussian only if H is linear

o Maximum likelihood estimate (mode of the distribution):
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• Reducing J(x) implies an increase in the probability of x being the 
true value



Incremental approach

Successive linearizations with respect to 
the full model state is obtained

o Minimization of quadratic problems

From Laroche and Gauthier (1998)
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where

x = x – xb : increment
H’ = H/x : tangent-linear of the 

observation operator
y’ = y – H(xb ): 
innovation vector (observation departure with 
respect to the high resolution background 
state)
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3D-Var: variational formulation of the statistical 
estimation problem

7.

Minimization of the cost function

where x = x - xb : increment
H’ = Hx : tangent-linear of the observation operator
y’ = y – H(xb ): innovation vector (observation departure) 

(computed with respect to the high 
resolution background state)
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Autocorrelation spectra of rotational and 
divergent components of background- 
error

8.

A triangular truncation
n 

 
108 (T108)

resolution is sufficient
to represent the whole
autocorrelation spectra



Regional analysis 
increment

• Analysis increment 
produced at full resolution (~ 
50 km) (control)

• Control - Incremental
(increment has a resolution 
of ~200 km)

• Control - Non-incremental 
(innovations produced with 
respect to the low resolution 
background state)
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4D variational data assimilation (4D-Var)

• Observation operator now involves a model 
integration that carry the initial conditions up 
to the time of the observations
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Extension of 3D-Var to 4D-Var

• Representation of the covariances contained within the change of 
variables x0 = B1/2 

•
• Each iteration of the minimization involves approximately 2-3 model 

integrations over the assimilation window (0 < t < T)

• Incremental formulation allows to reduce the cost of 4D-Var by using a 
simplified model, the tangent linear model linearized around the current 
model trajectory (Courtier et al., 1994)
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Cost function
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Tangent Linear model and Adjoint Model 
(LeDimet and Talagrand, 1986)

* Direct Model :

* Tangent Linear Model :

* Adjoint Model :
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Example: the Lorenz (1963) model 
• Direct Model

• Tangent Linear 
Model (TLM)

• Adjoint Model
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Schematic of the incremental 4D-Var
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Operations involved in a single 
iteration of 4D-Var
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 Integration of the operational model
 Initial Conditions: X0

(k) = X0
(k-1) + X0

(k-1)

 Computation of observation departures y' = y - HX(k)(t)
 Definition of the trajectory X(t) that defines the TLM and the

adjoint model

Minimization of the incremental problem
- Use a simplified model

(resolution and physical parameterizations)

X0
(k) = h-I x0

(k)

Outer and inner iterations 
of an incremental 4D-Var



Dynamical considerations about 4D-Var

• Predictability
– Limit to our ability to improve the fit to observations that are too 

distant in time

• Justification of the incremental approach
– Can we obtain a good analysis by only approximately correcting the 

initial conditions?

• Impact of model error
– Misfit to the observations is interpreted as an error in initial 

conditions

– Error in the model may be the cause

17.



Illustration with a barotropic model 
on the -plane (Tanguay et al., 1995)

 Model Atmosphere
Length Scale 2 7000 km 
Forcing Scale 2/3 2700 km 

Rayleigh Friction 50 40 days 
Advection time scale 1 0.3 days 

Turnover Time 9 3 days 
 

18.

• Model equations

 
  






 16

,
, EF

yx
y

t



Error spectra as a function of iteration 
Perfect model integrations with perfect observations at 
all times and at every grid point (no background term)
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Error spectra as a function of iteration 
Large scale perfect observations 
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Time evolution of the error spectrum

21.



Perfect Model 4D-Var assimilation (Ta = 20)

22.

True State                      T = 0                     4D-Var



Perfect Model 4D-Var assimilation (Ta = 20)

23.

True State                      T = 20                    4D-Var



Incremental approach

• Use a low resolution version of the model

• Experiments with a coarse observation network 
every time-step and with random error added

– Truncated 4D-Var: full 4D-Var except that the gradient is 
truncated to the resolution of the incremental model

– Low-Res 4D-Var: full 4D-Var at low resolution

– Incremental method with varying number of outer loops

24.



Incremental approach: correlation between the 
true solution and the assimilation/forecast

25.



Model error: variation of the 
 

parameter

• Introduce error in the phase speed of propagation of 
Rossby waves

– Mimicks phase error that often occur in NWP models

• Observations were generated with 
 

= 0.5

• Assimilation performed with 
 

= 0.4

26.



Experiment with phase error: 
correlation between the true solution and the 
assimilation/forecast

27.



Impact of 4DImpact of 4D--Var in the Canadian Var in the Canadian 
operational assimilation and operational assimilation and 

forecasting systemforecasting system



Global
Resolution over the globe: ~35 km

Computational Grid for the operational
global and regional forecast systems

Regional
Resolution over North America: ~15 km



2.5 km resolution grids 

Vancouver
Montreal

Toronto

Computational Grid for the experimental
mesoscale (local) forecast systems



Main Features of Model versions

Global Regional Mesoscale
Resolution 35 km L58 15 km L58 2.5 km L58

Primitive equations Hydrostatic Hydrostatic Non-Hydrostatic

Time integration Semi-implicit
Semi-Lagrangian

Semi-implicit
Semi-Lagrangian

Semi-implicit
Semi-Lagrangian

Timestep 15.0 min 7.5 min 1.0 min

Land scheme ISBA ISBA ISBA

PBL TKE Moist TKE Moist TKE

Cloud and 
precipitation

-Kain-Fritsch deep conv.
-Sundqvist cloud

-Kuo transient shallow cloud

-Kain-Fritsch deep conv.
-Sundqvist cloud

-Kuo transient shallow conv

-Explicit
One moment scheme

(Kong-Yau)

Sub-grid
orographic effects

-Gravity wave drag
-Low-level blocking

-Gravity wave drag
-Low-level blocking

none

Data assimilation 4D-Var 3D-Var none

Initialization DFI DFI none



06 UTC 12 UTC 18 UTC 00 UTC

OBS OBS
T + 6h

OBS
T + 9h

OBS
T + 9h

OBS
T + 9h

OBS
T + 3h

OBS
T + 3h

OBS
T + 3h

00 UTC

240h
global

fst

6-h
global

first guess

6-h
global

first guess

6-h
global

first guess

4D-Var
Analysis

4D-Var
Analysis

4D-Var
Analysis

4D-Var
Analysis

6-h
global

first guess

6-h
global

first guess

4D-Var
Analysis

4D-Var
Analysis

4D-Var
Analysis

4D-Var
Analysis

T + 6h

OBS
T + 5h30

6-h
regional
first guess

3D-Var
Analysis

6-h
regional
first guess

T + 1h40
OBS

3D-Var
Analysis

48h
regional

fst

T + 1h40
OBSOBS

T + 5h30

3D-Var
Analysis

6-h
regional
first guess

6-h
regional
first guess

3D-Var
Analysis

144h
global

fst

Data assimilation cycles at CMC



Analysis

Background

ATOVS
All Other Observations

1.5h-1.5h-6h 0h-3h 3h

ATOVS

All other Obs.

Assimilation Window

X

3D-Var

Presenter
Presentation Notes
This is a schematic of our former 3D-Var cycle. The blue circle is the background field which is a 6-h forecast from the previous analysis and the green dots and squares are the observations distributed over the 6-h assimilation window.

We suppose here that all the observations are valid at the same time corresponding to the background field. The analysis increment, which is calculated at a lower resolution, is obtained by globally fitting the observations and the background field according to their error statistics.

 



All Observations

1.5h-1.5h-6h 0h-3h 3h

Assimilation Window

X1

X0

Analysis

Background

ATOVS
All Other Observations

4D-Var

Presenter
Presentation Notes
In 4D-Var now, we first run the high-resolution model from the previous analysis over the whole assimilation window for comparison to the observations at the appropriate time. The first guess is now at the beginning of the assimilation window. We then perform a first minimization (or outer loop) by using the a simplified TLM and its adjoint in order to obtained a first analysis incremental that when added to the background field will give a first adjustment to the observations distributed in space and time. A second outer loop is then performed with more sophisticated physics in the TLM and adjoint for the final fit to background field and the observations over the assimilation window.



Configurations
Outer 
loop

Number 
of inner 
loops

Simplified
physics

Low- 
resolution
Analysis 

increments

High- 
resolution
trajectory

1 ~ 90 - 1.5o (T108) 
L58

~15 km
L58

1 30 -PBL 1.5o (T108) 
L58

(0.3o x 
0.45o) 
L58

2 25 -PBL
-SGO

-Stratiform 
precip.

1.5o (T108) 
L58

(0.3o x 
0.45o) 
L58

3D-Var

4D-Var

Global

Regional

Presenter
Presentation Notes
These tables summarized the main features of 3D-Var and the new 4D-Var. The background field is obtained from the forecast model for the medium-range forecast which has currently a resolution of 0.9 degrees over 28 vertical levels. The analysis increment is calculated at T108 or 1.5 degrees. The solution is usually  obtained after 90 iteration in the global minimization. 



In 4D-Var, minimization problem is splitted in two outer loops. 40 iterations are first performed with only the PBL parameterized in the linear models. The resolution of the increment and the high-resolution model are the same as in 3D-Var.



Type Variables Thinning
radiosonde/dropsonde U, V, T, (T-Td ), ps 28 levels

Surface report T, (T-Td ), ps , (U, V over water) 1 report/6h

Aircraft
(BUFR, AIREP, AMDAR, ADS)

U, V, T 1o x 1o x 50 hPa

ATOVS
NOAA , AQUA

Ocean            Land
AMSU-A             3-10              6-10
AMSU-B              2-5                3-4

250 km x 250 km

Water vapor channel
GOES 

IM3
(6.7 )

2o x 2o

AMV
(Meteosat, GOES, MTSAT)

U,V
(IR, WV, VI channels)

1.5o x 1.5o

MODIS
(Aqua, Terra)

U,V 1.5o x 1.5o

Profiler
(NOAA Network)

U,V (750 m) Vertical

Observations assimilated at the CMC



Temporal thinning

3D-Var

4D-Var

0-h-3h +3h






    

0-h-3h +3h






    

Presenter
Presentation Notes
An important difference between 3D-Var and 4D-Var is the temporal thinning. The spatial thinning are still the same. However if many observations distributed in time are located over a given area, then in 3D-Var, only the observation the closest to the center of the assimilation window is retained. In our 4D-Var, the assimilation window is splitted into 9 intervals and one observation per interval is selected.
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Presenter
Presentation Notes
This temporal thinning significantly increased the number of data assimilated.

Here is the amount of observations for different types of data for 3D-Var and 4D-Var. We can see that the amount of wind vector from satellites, aircraft data as well as ATOVS data has substantially increased, especially over the high latitudes where several satellite orbits overlapd. Overall, there is 60% more data in 4D-Var then in 3D-Var.



Impact of the various components of 4D-Var

Type Outer 
loops

Simplified
Physics

Temporal
thinning

3D-Var 1 - 3D
3D-Var
(FGAT)

1 - 3D

4D-Var
(1 loop)

1 (simpler) 4D

4D-Var
(simpler)

2 (simpler, simpler) 4D

4D-Var
(3D-thin)

2 (simpler, better) 3D

4D-Var 2 (simpler, better) 4D

Presenter
Presentation Notes
In order to better understand the impact of the  new components of 4D-Var, we performed data assimilation cycles over a one period (more specifically August 2004) with various configurations shown here ranging in complexity from 3D-Var to the implemented 4D-Var. The first one is the same as in 3D-Var but with the first guess at the appropriate time. This is a flavor of 3D-Var that has been implemented in many operational centers in past. Then we have a very simple 4D-Var with just one outer loop which includes only the PBL parametrization in the simplified physics package (this is referred to as simpler here). Then we consider a configuration very close to the implemented one except the better simplified physics is replaced by the simpler one. Finally, we have a configuration which is the same as the implemented 4D-Var but the same set of observations of 3D-Var that passes thought a 3D temporal thinning process.



August 2004

RMS error
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Southern Hemisphere
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Impact of the various components of 4D-Var

Presenter
Presentation Notes
Here are the results over the southern hemisphere from the various configurations. This figure shows the RMS error for the 500 hPa geopotential height. In this region and for the geopotential height, we can clearly see a consistent reduction of errors when including the new 4D-Var features. Using these scores, it is possible to actually rank the contribution of each component.



3% (traj. updates)

100%

36%(4D thinning)

4D-Var

3D-Var

4D-Var (simpler)

4D-Var (3D-thin)

6% (better physics)

50% (TL/AD)

14% (FGAT)
3D-Var (FGAT)

4D-Var (1 loop)

Impact of the various components of 4D-Var

Presenter
Presentation Notes
This figure display the rankings. The impact of each element can be deduced from the difference between two configurations. In this way, we found that the first guess at the appropriate time contribute for 14% of the improvement, the use of the TLM and its adjoint to propagate the information in the assimilation window is responsible for nearly 50% of the improvement while the 4D thinning which provide a additional 60% of observations compared to 3D-Var contributes for 36%. The use of a better physic in the second outer loop provides only around 6% improvement and finally the update high-resolution trajectory lead to only 3% of improvement.



4D4D--Var Var –– EnKF intercomparisonEnKF intercomparison



43/27

Explicit observation perturbations, and
implicit (but effective) background perturbations.

(Houtekamer et al 1996; Fisher 2003 ;
Ehrendorfer 2006 ; Berre et al 2006)

Ensemble assimilation (EnDA = EnVar, EnKF, …) :
 simulation of the error evolution

Flow-dependent B

b
 

= M a
 

(+ m )

a

(from Berre et al., 2009)

Presenter
Presentation Notes
 



Experimental Systems (Buehner et al., 2010) 
Modifications to configurations operational during summer 2008

• 4D-Var
– incremental approach: ~35km/150km grid spacing, 58 levels, 

10hPa top  Increased horizontal resolution of inner loop to 
100km to match EnKF

• EnKF
– 96 ensemble members: ~100km grid spacing, 28 levels, 10hPa 

top  Increased number of levels to 58 to match 4D-Var

• Same observations assimilated in all experiments:
– radiosondes, aircraft observations, AMVs, US wind profilers, 

QuikSCAT, AMSU-A/B, surface observations
– eliminated AIRS, SSM/I, GOES radiances from 4D-Var
– quality control decisions and bias corrections extracted from an 

independent 4D-Var experiment



Experimental Configurations

• Variational data assimilation system:
– 3D-FGAT and 4D-Var with B matrix nearly like operational system: 

NMC method

– 3D-FGAT and 4D-Var with flow-dependent B matrix from EnKF at 
middle or beginning of assimilation window (same localization 
parameters as in EnKF)

– Ensemble-4D-Var (En-4D-Var): use 4D ensemble covariances to 
produce 4D analysis increment without TL/AD models (most similar 
to EnKF approach)

• EnKF: 

– Deterministic forecasts initialized with EnKF ensemble mean 
analysis (requires interpolation from ~100km to ~35km grid)



4D4D--Var Var –– EnKF intercomparisonEnKF intercomparison 
Main conclusions (presented at 5th WMO data assimilation symposium)

• Both systems in operational suite, EnKF currently used only for 
initializing Ensemble Forecasts

• Goal: to compare the approaches (and combination approaches) in 
the context of high-resolution deterministic analyses/forecasts

• Deterministic forecasts initialized with 4D-Var with operational B and 
EnKF ensemble mean analyses have comparable quality: 4D-Var 
better in extra-tropics at short-range, EnKF better in the medium 
range and tropics

• Largest impact (~9h gain at day 5) in southern extra-tropics Feb 2007 
for 4D-Var with flow-dependent EnKF B vs. 4D-Var with operational B 
and also better in tropics – smaller improvement during July 2008

• Continuing to test ways to make best use of EnKF ensemble 
covariances within the variational system



Results – 500hPa GZ anomaly correlation

FEV GZ 500 hPa - Hem. Nord
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Large improvement from using flow-dependent covariances 
in 4D-Var

Northern extra-tropics Southern extra-tropics

4D-Var Bnmc
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Evolution of mean 3-hour accumulated precipitation

Forecast Results – Precipitation
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4D error covariances 
Temporal covariance evolution (explicit vs. implicit evolution)

EnKF (and En-4D-Var):

4D-Var-Benkf:

-3h 0h +3h

3D-FGAT-Benkf:

96 NLM integrations

96 NLM integrations

96 NLM 
integrations

55 TL/AD integrations,
2 outer loop iterations



Forecast Results: 
En-4D-Var vs. 3D-FGAT-Benkf

Difference in 
stddev relative 
to radiosondes:
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3D-FGAT-Benkf better
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Forecast Results: 
En-4D-Var vs. 4D-Var-Benkf

Difference in 
stddev relative 
to radiosondes:

Positive 
En-4D-Var better

Negative 
4D-Var-Benkf better
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Calculation of a : 
«consistent ensemble 4D-Var » 
or « hybrid EnKF/Var » ?
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In the Météo-France context with 4D-Var,
a consistent variational approach is used 
in both ensemble and deterministic components :



 

simple to implement

 

(perturbed Var ~ unperturbed Var).



 

a full-rank hybrid B is consistently

 

used in the 2 parts.



 

non-linear aspects of 4D-Var

 

can be represented 
in the analysis perturbation update.
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Explicit observation perturbations, and
implicit (but effective) background perturbations.

(Houtekamer et al 1996; Fisher 2003 ;
Ehrendorfer 2006 ; Berre et al 2006)

Ensemble assimilation (EnDA = EnVar, EnKF, …) :
 simulation of the error evolution

Flow-dependent B

b
 

= M a
 

(+ m )

a

(from Berre et al., 2009)

Presenter
Presentation Notes
 



54/27 (Raynaud et al 2008a)(Raynaud et al 2008a)

““OPTIMIZEDOPTIMIZED”” SPATIAL FILTERING SPATIAL FILTERING 

OF THE VARIANCE FIELD OF THE VARIANCE FIELD 

Vb
* ~ 

 

Vb

where 

 

= signal/(signal+noise)

« TRUE » VARIANCES FILTERED VARIANCES VARIANCES (N = 6)

RAW VARIANCES VARIANCES (N = 6) (Berre et al 2007, Raynaud et al 2008,2009)



Mean sea level pressure :

storm over France

Connexion between large b ’s and intense weather 
( 08/12/2006 , 03-06UTC )

Ensemble spread:

large b

 

’s

 

over France

NB : changes in b

 

’s

 

are relatively localized.



Validation of ensemble b ’s « of the day » 
in HIRS 7 space (28/08/2006 00h) (Berre et al 2007)

Ensemble sigmab’s

« Observed » b

 

’s
cov( H dx , dy ) ~ H B HT

(Desroziers et al 2005)

=> model error estimation. 



Weak-constraint 4D-Var

       
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x H x y R H x y

x x B x x Q    1i i i it M   x x x

Cost function to minimize Model error is added at 
regular intervals (e.g., 
timestep)

Allow to extend the assimilation window but the control 
variable is now a full model trajectory

(Trémolet, ECMWF 2007)



Conclusions

• Hybrid methods permit to cycle a 4D-Var assimilation
– Measure of the accuracy of the background takes into account the information 

gained in the previous assimilations and flow-dependent error growth

– Ensemble methods require some filtering to remove sampling noise
• Results from two centres indicate that this has a positive impact on 

the forecasts
– Deterministic forecasts initialized with 4D-Var with operational B and EnKF 

ensemble mean analyses have comparable quality: 4D-Var better in extra-tropics 
at short-range, EnKF better in the medium range and tropics

– Largest impact (~9h gain at day 5) in southern extra-tropics for 4D-Var with flow- 
dependent EnKF B vs. 4D-Var with operational B and also better in tropics – 
smaller improvement in July 2008

– Use of 4D ensemble B in variational system (i.e. En-4D-Var):



 

improves on 3D-FGAT, but inferior to 4D-Var (both with 3D 
ensemble B), least sensitive to covariance evolution in tropics



 

comparable with EnKF
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