Has the data outstripped the models?
Or:

What can possibly go wrong?



Recap from yesterday

Data assimilation is an example of Bayesian Inference;
Bl itself follows from rules for combining PDFs;

Techniques like least squares minimisation are special cases for
particular types of PDF

Most approaches such as Kalman Filtering and 4dVar can be
expressed with this formalism.



Outline

e What should happen;

e The black triangle revisited;
e Things to watch for;

e Some real world cases;

e \What can we do?



What should happen

PDFs for parameter with
prior (blue) and after 1, 2
and 3 observations.

Prior broad distribution hence
weak constraint:

Each observation refines the
estimate (sharper peak);

Each estimate is consistent with
the previous ones;

Final estimate casts doubt on
prior estimate but not the PDF.



The black triangle revisited
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e unknown on X-axis, obs on

Y-axis;

Light-blue = prior unknown;
Light-red = obs;

Green = model:

Black = solution.
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A problematic Case

‘ measurement

param

No overlap means no
solution;

Fundamental problem is at
least one PDF is wrong;

With a Gaussian we always
get a solution but sometimes
of very low probability;

How can we tell?



Another problematic Case

e Parameter  constrained by
measurements of two different
quantities;

e Either measurement alone is
consistent with prior;

e 2 measurements -+ prior —+
model has no solution.

rior



What to do?

e Look hard at each of the 3 input PDFs;

e Check the assumed PDF against the sample generated in the
Inversion;

e Check with independent data (often called cross-validation);

e A lot of examples.



First check the Priors

e Approach will differ depending on the unknowns;

e Sometimes you calculate actual PDFs, sometimes you use
algorithms;

e Cases like weather prediction you can test these rules every day.



Example from Flux Inversions

e Chevallier et al. GRL, 2006:

e Compare ORCHIDEE at 50km resolution to CO5 flux
measurements;

e STD-dev of differences ~ 2.5 respiration;
e No spatial correlations in error;

e Temporal correlations of about 1 month.



The Measurement PDF

e PDF is that of the true value;
e Known errors (often called biases) must be removed first;

e This does not say there are no mean errors left, just that we
don't know what they are.



Get to Know your Measurements

e Many “measurements’ are themselves products of a model;
e \Worry much more about the systematics than the noise;

e Systematics can be treated as correlated errors;

e Small signals on long records are the hardest things we do;

e Independent data is precious.



Comparison of SCIAMACHY and TCCON

Park Falls (USA)

——— NOAA CarbonTracker 2009
« FTS

e  SCIAMACHY (adjusted for CT2009 prior) SCIAMACHY (static prior)
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Comparison of SCIAMACHY and
ground-based spectrometer
measurements of CO5, at Park
Falls Wisconsin

Reuter et al., 2010, (in prep.);

SCIAMACHY satellite on board
ESA ENVISAT:

Ground-based  Solar  Fourier
Transform Spectrometer part of
Total Carbon Column Observing
Network (TCCON);

Random and systematic errors
but data are approaching usable.



Validating TCCON
e D.Wunch et. al., (2010)
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to overall error.



Including measurement errors in Model

e Often you don't have independent data;
e Add extra unknowns to account for systematic errors, e.g.
g = q" + ¢(latitude)
to deal with consistent errors in latitude

e This sacrifices some information in g.



Combining SCIAMACHY and

01 01 2003 — 31 12 2003
SCIAMACHY (bias corrected)

17.0E2 17.3E2 17.5e2
CH, VMR [ppb]

Annually-averaged, column-integrated 4
methane mixing ratio from SCIAMACHY
alone (top) and from SCIAMACHY and
surface data assimilated into a single flux

inversion (bottom).

in situ CH, data

Bergamaschi et al., JGR
2007;

SCIAMACHY methane from
Frankenberg0b;

Uses modelled CO, as
reference;

Bias-corrected by
simultaneously assimilating
surface data into flux
Inversion.



Accounting for Discontinuities

Cape Grim (CGO) 5'°C(C0,)
-4

e [wo external references
necessary for final

-7.6 + Cape Grim (CGO) co2¢13
— Air Standard change

measurement;

-7.8 -.. 3 $ —— CO2 reference change

-8.0

Great effort made to

-8.2
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maintain continuity across

5'°C(CO2) / (per mill, VPDB)
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changes but never perfect;

-3.8
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Year

d3CO4 measurements from Cape
Grim, Tasmania.

e Can be handled either
with extra unknowns or
correlations.



Checking the Model PDF

Need PDF of simulated value given true value for unknowns;
Rarely have such cases;
Use model ensembles as proxy; risky;

More tomorrow.



T1 fossil and biosphere
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Checking Posterior PDFs

e Basic assumption is that the samples of posterior values for
unknowns and simulated observations are drawn from the
relevant populations;

— Posterior — prior < prior PDF
— Model — observed < data PDF

e Must hold for all aspects of the PDF;

e Take note of sample size.
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A problematic Case

‘ measurement

param

No overlap means no
solution

With a Gaussian we always
get a solution but sometimes
of very low probability;

How can we tell?

Fix by increasing
uncertainties but which ones
and how much?



Plot the Residuals

e Plot of normalised innovations (posterior

— prior)/(prior-uncertainty) and normalised
residuals  (simulation —  obs)/(data-
uncertainty) for flux inversion;

e Use cumulative frequency rather than raw

. PDF, easier to look at:

e Compare with standard normal distribution;

e The steep slope corresponds to smaller
variance;

e Also numerical tests.



Value of the cost function

Minimise

T = To+ C(fo)MT [MC(fO)MT + C(?j)] B (g_ Mf())
Substituting

Juin = (§ — Miy)" [MC(Z)M" + C(7))] B (¥ — MZy)



Properties

— — — — —1 — —
Juin = (§— M) [MC(Z)M" + C(7)] (¥ — M)
Numerator difference between obs and prior simulation;
Denominator uncertainty in that quantity;

Should be consistent Jy vy ~ Nops, if not, posterior
uncertainty inconsistent with inputs;

Michalak et al., JGR, 2005 has algorithm for scaling uncertainty.



Example of Bias
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Amplitude Example
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Residuals and their correlations

mhd_01D0 lag correl

1992 1994 1996 1998 2000 2002 2004 2006 .27 .

Residual (Model — observed)
CO5 concentration for Mace
Head, Ireland

Lagged correlation of
residuals



Cross Validation

e Use of independent data to test results of assimilation;

e If assimilation is for state data is rare but if for function we can
apply the model elsewhere;

e Sometimes independent data is for the unknowns but usually
other observables;

e As always, need to consider the problem statistically.



Independent Measurements of the unknowns

e Lauvaux et al., GRL, 2009:

amotmraa| @ Aireras 7
[ mrte 1 o Compare inverse fluxes
o T__‘,r ‘} L with independent
érf””'ﬁj 5 measurements from
5 m— ] aircraft;
10! first guess R 0

Validation ecosystem

measurements e Posterior estimates closer
to aircraft fluxes.



That — triangle again

[ data

model

1.2
measurement

0.8
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Unknown on X-axis, obs on
Y-axis;

Now imagine light blue was
posterior PDF from previous
Inversion;

If just used central value (0)
would not overlap obs;

Must consider posterior
uncertainty in unknowns
when comparing to other
obs.



Summary

e Problems with data assimilation usually sign of incorrectly
specified statistics;

e Where possible check input statistics against independent data;
e Check output statistics against assumed PDFs;
e Check as many elements as possible, not just quality of fit;

e Uncertainties are a necessary component of cross-validation.



