Gravity An Introduction

Reiner Rummel Institute of Advanced Study (IAS) Technische Universität München

Lecture One

5th ESA Earth Observation Summer School

2-13 August 2010, ESA-ESRIN, Frascati / Italy

gravitation and space science

micro-g environment: e.g. boiling water

fundamental physics: e.g. equivalence principle

earth sciences e.g. gravitational field of earth moon and planets

global map of gravity anomalies

Lecture One:

- Theoretical basics of gravitation as applied to the earth
- [gravitational law, properties, mathematical representation]
- The "language" for the two other lectures
- Lecture Two:
- The role of the earth's gravitational field in earth sciences [gravity anomalies, geoid as a reference, temporal variations] Lecture Three:
- Principles of satellite gravimetry; in their logic derived from free fall tests
- in a laboratory on earth
- [the orbit, principles of GRACE, ESA's mission GOCE and satellite gradiometry]

Newton's law of gravitation:

$$\vec{F}_{A} = -G \, \frac{m_{A} m_{B}}{\ell_{AB}^{2}} \, \vec{e}_{AB} = -G \, \frac{m_{A} m_{B}}{\left| \vec{x}_{A} - \vec{x}_{B} \right|^{3}} \left(\vec{x}_{A} - \vec{x}_{B} \right)$$

Newton's second law:

$$\vec{F}_{A} = \boldsymbol{m}_{A}^{\prime} \, \vec{a}_{A}$$

gravitational acceleration:

$$\vec{a}_{A} = -G \, \frac{m_{A} m_{B}}{m_{A}^{\prime} \ell_{AB}^{2}} \vec{e}_{AB}$$

from single mass, to many masses, to a continuum

$$\vec{a}_{A} = -G \iiint_{\Sigma} \frac{\rho_{B}}{\ell_{AB}^{2}} \vec{e}_{AB} d\Sigma_{B}$$

Fundamental properties of Newton's law of gravitation:

- central force
- action = reaction
- inverse square distance
- superposition of all partial forces
- instantaneous

$$\vec{a}_{A} = -G \iiint_{\Sigma} \frac{\rho_{B}}{\ell_{AB}^{2}} \vec{e}_{AB} d\Sigma_{B}$$

 \vec{a}_A is a vector field in space with the following properties:

$$\nabla \times \vec{a}_A = 0$$
 curl free $\vec{a}_A = \nabla_A V$

i.e. there exists a gravitational potential V and in outer space, we get:

$$\nabla \cdot \vec{a}_{A} = 0$$
 source free $\nabla^{2} V = 0$

$$\vec{a}_{A} = -G \iiint_{\Sigma} \frac{\rho_{B}}{\ell_{AB}^{2}} \vec{e}_{AB} d\Sigma_{B}$$

 a_A is a vector field with the following properties:

a nice application: a satellite orbit

 $\ddot{\vec{x}}_{A} = \vec{a}_{A} = \nabla_{A}V + "$ perturbations " and initial conditions : \vec{x}_{0} ; $\dot{\vec{x}}_{0}$

example: satellite orbit

a nice application: a satellite orbit

Kelplerian ellipse

precessing ellipse

precessing ellipse plus "gravitational code"

What about the attraction of sun, moon and planets?

Answer: They determine the earth's orbit about the sun

Tides are acceleration relative to the earth's center of mass

Marshak, 2005

gravitation and gravity

on the surface of the rotating earth one measures: gravity= gravitation + centrifugal acceleration

gravity (in laboratory at TU München) 9.807 246 72 m/s²

variable stationary	10 ⁰	spherical Earth
	10 ⁻³	flattening & centrifugal acceleration
	10-4	mountains, valleys, ocean ridges, subduction
	10 ⁻⁵	density variations in crust and mantle
	10 ⁻⁶	salt domes, sediment basins, ores
	10 ⁻⁷	tides, atmospheric pressure
	10 ⁻⁸	temporal variations: oceans, hydrology
	10 ⁻⁹	ocean topography, polar motion
	10⁻¹⁰	general relativity

gravity related quantities

geoid heights

deviation of geoid from Earth ellipsoid or equilibrium figure ± 30m

topography

altitude of land surface above geoid (mean sea level) < 8000m

ocean topography

deviation of actual ocean surface from geoid (= idealised ocean surface)

<1m to 2m

gravity related quantities

map with geoid heights relative to the GRS80 ellipsoid

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

Laplace equation (PDE)

solution in Cartesian coordinates (after determination):

$$\delta V_A(x, y, z) = V_0 \sum_{k=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} \exp\left(-\sqrt{k^2 + \ell^2} z\right) C_{k\ell} \exp\left(i\left[kx + \ell y\right]\right)$$

with $z \ge 0$

solution in spherical coordinates (after determination):

$$\delta V_{A}(\varphi,\lambda,r) = V_{0} \sum_{n=0}^{\infty} \left(\frac{R}{r}\right)^{n+1} \sum_{m=0}^{n} \overline{P}_{nm}(\varphi) \left[\overline{C}_{nm} \cos m\lambda + \overline{S}_{nm} \sin m\lambda\right]$$
$$= V_{0} \sum_{m=0}^{\infty} \left(\left[\sum_{n=m}^{\infty} \left(\frac{R}{r}\right)^{n+1} \overline{C}_{nm} \overline{P}_{nm}(\varphi)\right] \cos m\lambda + \left[\sum_{n=m}^{\infty} \left(\frac{R}{r}\right)^{n+1} \overline{S}_{nm} \overline{P}_{nm}(\varphi)\right] \sin m\lambda\right)$$

...almost a Fourier series

spectral representation of the earth's gravitational field: triangular plot of the spherical harmonic coefficients \overline{C}_{nm} ; \overline{S}_{nm}

surface spherical harmonic functions:

$$Y_{nm}(\varphi,\lambda) = \overline{P}_{nm}(\varphi) \begin{cases} \cos m\lambda \\ \sin m\lambda \end{cases}$$

in analogy to signal processing: characteristics of signal and noise Here: degree variances correspond to power spectral density

signal degree variance

power "law" by WM Kaula

signal and error degree variances (dimensionless)

series representation of temporal variations of gravitational field

rapid time variable geoid signals (RMS)

[to be divided by the earth radius in order to arrive at dimensionless units]

series representation of temporal variations of gravitational field

"slow" geoid time variable signals (RMS)

[to be divided by the earth radius in order to arrive at dimensionless units]

three levels of gravity quantities on earth and in space

$$\delta V_{A}(\varphi,\lambda,r) = V_{0} \sum_{n=0}^{\infty} \left(\frac{R}{r}\right)^{n+1} \sum_{m=0}^{n} \overline{P}_{nm}(\varphi) \left[\overline{C}_{nm} \cos m\lambda + \overline{S}_{nm} \sin m\lambda\right]$$
$$= V_{0} \sum_{m=0}^{\infty} \left(\left[\sum_{n=m}^{\infty} \left(\frac{R}{r}\right)^{n+1} \overline{C}_{nm} \overline{P}_{nm}(\varphi)\right] \cos m\lambda + \left[\sum_{n=m}^{\infty} \left(\frac{R}{r}\right)^{n+1} \overline{S}_{nm} \overline{P}_{nm}(\varphi)\right] \sin m\lambda\right)$$

disturbance potential or geoid gravity disturbances or gravity anomalies

gravity gradients or torsion balance

various gravity quantities on earth and in space

h = 0km

Gravity model EGM08, D/O1000

three levels of gravity quantities on earth and in space

various gravity quantities on earth and in space

 δV_r

h = 400 km

h = 250 km

h = 0 km

various gravity quantities on earth and in space

satellite-to-satellite tracking low-low

satellite-to-satellite tracking high-low

satellite gradiometry

satellite altitude r

earth's surface R

summary of lecture One

- Newton's law of gravitation describes all its relevant properties such as inverse square distance, principle of superposition, its stationary part being vorticity free, and source free outside the earth (Laplace equation)
- 2. Gravity is the sum of gravitation and the centrifugal part
- 3. Satellite orbits are essentially described by gravitation
- 4. Tides are an accelertation (a force) relative to the earth's center of mass
- 5. The global gravitational field is represented as a series of spherical harmonics being a solution of Laplace partial differential equation (*Dirichlet*)
- 6. Spherical harmonics on a sphere are analogous to a Fourier series in a plane
- 7. Therefore there exists a closed theory of "signal and noise processing"
- 8. With increasing distance from the earth sphere the series coefficients are dampening out per degree n like $(R/R+h)^{n+1}$
- 9. With each radial derivative of the gravitational potential the series coefficients are amplified per degree n like (n+1)
- 10. The strategy of satellite missions GRACE and GOCE rests on the principle of compensating the dampering effect by amplification (see 8. and 9.)