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Outline of series

1. Basic approach with some simple examples;

2. What can go wrong and how would we know?

3. Some advanced uses, model development and evaluation.



Outline for Lecture One

• Motivation: An example of data assimilation for climate;

• The minefield of nomenclature and notation;

• Data assimilation as Bayesian inference;

• Some simple examples;

• Looking hard at each component.



Motivation
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Uncertainty in terrestrial

uptake, 2000–2090. Black

lines = current climate, red

= climate change. Thin lines

= original model, thick =

after data.

• Rayner et al., Phil. Trans.

2010;

• Uncertainties completely

dominated by climate

change;

• Greatly reduced by

confronting with data.



The problem

• To improve our knowledge of the state and functioning of a

physical system given some observations.

• “State” means the value of physical quantities which may

evolve, usually the variables in a numerical model;

• “Function” means the fixed values or even functional forms of

the laws governing the system.



Name Symbol Description Examples
Parameters ~p Quantities not

changed by model
ξ (buffer
factor), ba
(terrestrial flux
amplitude)

State variables ~v Quantities altered by
model

leaf area, DIC

Unknowns1 ~x Quantities exposed to
optimisation

ξ, cI(t = 0)

Observables ~o Measurable
quantities, may
be in ~v

cA, total
carbon

Observation
operator

Transforms ~v to ~o 1, cI + cO

Model M Predicts ~v given ~p and
~v(t = 0)

Data ~d Measured values of ~o



Data Assimilation in One Picture
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• Unknown on X-axis, obs on
Y-axis;
• Light-blue = prior unknown
• Light-red = obs
• Green = model;
• Black = solution.



Well, almost one picture
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Solution is multiplication

of input PDFs.
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Notes

• Solution is multiplication of PDFs;

• Solution can be constructed with only forward models;

• Normalization doesn’t usually matter.



Gaussian Prior
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Data
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Model
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Prior plus Data plus Model
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“Solving” the Inverse Problem

• The joint PDF is the solution;

• For Gaussians the solution can be represented by a mean and

variance;

• These can be misleading.



A simple example

P (x, y) =
1√

2πσxσyσM

exp−(x− x0)2

2σ2
x

×exp−(y −D)2

2σ2
y

×exp−(y −M(x))2

2σ2
M

• x0 = 0, D = 1, M = 1, σx = σy = σM = 1;

• Multiplying exponentials ↔ adding exponents;

P (x, y) =
1√
2π

exp−
[
x2

2
+

(y − 1)2

2
+

(y − x)2

2

]



Solution Continued

P (x, y) =
1√
2π

exp−
[
x2

2
+

(y − 1)2

2
+

(y − x)2

2

]
• Finding most likely value means maximizing probability

• Maximizing negative exponential means minimizing :

J =
1
2
[
x2 + (y − 1)2 + (y − x)2

]
• Example of least squares cost function.



Solution Continued

J =
1
2
[
x2 + (y − 1)2 + (y − x)2

]
• To maximize set ∂J

∂x = 0 and ∂J
∂y = 0

2x− y = 0 (1)

2y − x− 1 = 0 (2)

• x = 1
3, y = 2

3



Illustrating Solution

unknown
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measurement

prior • Prior estimate is intersection of
red and blue lines (0, 1).

• Solution is pulled directly
towards model;

• Solution is compromise between
prior, measurement and model;

• Solution depends on both values
and uncertainties.



More detail on Uncertainties

• Prior PDF is distribution of true value deliberately ignoring measurements
we intend to use. Often expressed as distribution around value but not
necessary.

• PDF of data is distribution of true value, usually distributed around a
measurement;

• PDF of model describes distribution of true value given particular value of
“unknown”. Almost never available.



First Simplification

• Often we are not interested in estimating the observable;

• For Gaussian PDFs we can pretend our model is perfect and add
observational and modelling error variances (Tarantola 2004, P202);

• Thus

J =
1
2
[
x2 + (y − 1)2 + (y − x)2

]
becomes

J∗ =
1
2
[
x2 + (x− 1)2/2

]
• Yields x = 1

3 but not y = 2
3.



Recursive estimation

• Multiplication of PDFs can be done in any order and many at a time or
singly;

• If we preserve the full PDF we can include observations as they arrive;

• For Gaussians PDF described by means and variances;

• Information is always added so that PDFs are always refined.



Batch and Sequential Methods

BATCH

• Handle all obs at once;

• PDFs for priors and obs
unrestricted;

• Model error hard to include;

• Classic example 4dVar for
weather prediction.

SEQUENTIAL

• Handle obs as they arrive;

• PDFs for obs restricted (time
correlations hard);

• Model error handled very
naturally;

• Kalman Filter.



A few Example Applications

• What are the unknowns?

• What is the prior estimate?

• What are the observations?

• What is the model?

• How do they handle the time domain?



Numerical Weather Prediction 4dVar

• Unknown is 3d grid of atmospheric variables at fixed time;

• Prior is previous forecast;

• Observations include in situ and satellite measurements over a fixed time
window;

• Model combines dynamic evolution of atmosphere with observation
operators;

• All observations handled at once;

• doesn’t usually have explicit model error.



Numerical Weather Prediction, Kalman filtering

• Unknown is 3d grid of atmospheric variables at each time;

• Prior is previous posterior;

• Observations include in situ and satellite measurements within one timestep;

• Dynamic model and observation operators separated;

• Always has explicit model error.



Atmospheric Flux Inversion

• Unknown is space-time distribution of surface fluxes;

• Prior often comes from biogeochemical model;

• Observations are atmospheric concentration;

• Model is atmospheric transport;

• All observations usually handled at once;

• Model error sometimes handled via model ensemble.



Biogeochemical data assimilation

• Confusing terminology;

• Unknowns are parameters in model;

• Priors from independent experiment or literature;

• Many different observations (fluxes, concentrations, vegetation indices,
ocean colour etc);

• Dynamic model and obs operators separated;

• Equally split between batch and sequential.



Linear Gaussian Case

• Unknowns and data are vectors ~x and ~d;

• σ2 replaced with variance/covariance matrices C for ~x and ~d;

• Model M becomes matrix M;

• Use usual simplification of assuming perfect model and adding data and
model uncertainties.



Solution

P (~x) = K
1√

detC(~x0) detC(~y)
exp−1

2
(~x− ~x0)TC−1(~x0)(~x− ~x0) exp−1

2
(M~x− ~y)TC−1(~y)(M~x− ~y)

Minimize

J = (~x− ~x0)TC−1(~x0)(~x− ~x0) + (M~x− ~y)TC−1(~y)(M~x− ~y)



Continued

J = (~x− ~x0)TC−1(~x0)(~x− ~x0) + (M~x− ~y)TC−1(~y)(M~x− ~y)

Yields

~x = ~x0 + C(~x0)MT
[
MC(~x0)MT + C(~y)

]−1
(~y −M~x0)

C−1(~x) = C−1(~x0) + MTC−1(~y)M



Summary

• Data assimilation is an example of Bayesian Inference;

• BI itself follows from rules for combining PDFs;

• Techniques like least squares minimisation are special cases for particular
types of PDF;

• Most approaches such as Kalman Filtering and 4dVar can be expressed with
this formalism.


