Data assimilation in biogeochemistry: Adapting the paradigm of numerical weather prediction

Peter Rayner
University of Melbourne

Outline of series

1. Basic approach with some simple examples;
2. What can go wrong and how would we know?
3. Some advanced uses, model development and evaluation.

Outline for Lecture One

- Motivation: An example of data assimilation for climate;
- The minefield of nomenclature and notation;
- Data assimilation as Bayesian inference;
- Some simple examples;
- Looking hard at each component.

Motivation

Uncertainty in terrestrial uptake, 2000-2090. Black lines $=$ current climate, red
= climate change. Thin lines
$=$ original model, thick $=$ after data.

- Rayner et al., Phil. Trans. 2010;
- Uncertainties completely dominated by climate change;
- Greatly reduced by confronting with data.

The problem

- To improve our knowledge of the state and functioning of a physical system given some observations.
- "State" means the value of physical quantities which may evolve, usually the variables in a numerical model;
- "Function" means the fixed values or even functional forms of the laws governing the system.

Name	Symbol	Description	Examples
Parameters	\vec{p}	Quantities not changed by model	ξ (buffer factor), b_{a} (terrestrial flux amplitude)
State variables	\vec{v}	Quantities altered by model	leaf area, DIC
Unknowns ${ }^{1}$	\vec{x}	Quantities exposed to optimisation	$\xi, c_{I}(t=0)$
Observables	\vec{o}	Measurable quantities, may be in \vec{v}	c_{A}, \quad total carbon
Observation operator		Transforms \vec{v} to \vec{o}	1, $c_{I}+c_{O}$
Model	M	Predicts \vec{v} given \vec{p} and $\vec{v}(t=0)$	
Data	\vec{d}	Measured values of \vec{o}	

Data Assimilation in One Picture

- Unknown on X-axis, obs on Y-axis;
- Light-blue $=$ prior unknown
- Light-red = obs
- Green = model;
- Black = solution.

Well, almost one picture

Solution is multiplication of input PDFs.

Final PDF projects triangle onto "unknown"
axis.

Notes

- Solution is multiplication of PDFs;
- Solution can be constructed with only forward models;
- Normalization doesn't usually matter.

Gaussian Prior

Data

Model

Prior plus Data plus Model

$$
\frac{1}{\sqrt{2 \pi} \sigma_{P} \sigma_{D} \sigma_{M}} \exp -\frac{x^{2}}{2 \sigma_{P}^{2}} \times \exp -\frac{(y-1)^{2}}{2 \sigma_{D}^{2}} \times \exp -\frac{(y-M(x))^{2}}{2 \sigma_{M}^{2}}
$$

"Solving" the Inverse Problem

- The joint PDF is the solution;
- For Gaussians the solution can be represented by a mean and variance;
- These can be misleading.

A simple example

$P(x, y)=\frac{1}{\sqrt{2 \pi} \sigma_{x} \sigma_{y} \sigma_{M}} \exp -\frac{\left(x-x_{0}\right)^{2}}{2 \sigma_{x}^{2}} \times \exp -\frac{(y-D)^{2}}{2 \sigma_{y}^{2}} \times \exp -\frac{(y-M(x))^{2}}{2 \sigma_{M}^{2}}$

- $x_{0}=0, D=1, M=1, \sigma_{x}=\sigma_{y}=\sigma_{M}=1$;
- Multiplying exponentials \leftrightarrow adding exponents;

$$
P(x, y)=\frac{1}{\sqrt{2 \pi}} \exp -\left[\frac{x^{2}}{2}+\frac{(y-1)^{2}}{2}+\frac{(y-x)^{2}}{2}\right]
$$

Solution Continued

$$
P(x, y)=\frac{1}{\sqrt{2 \pi}} \exp -\left[\frac{x^{2}}{2}+\frac{(y-1)^{2}}{2}+\frac{(y-x)^{2}}{2}\right]
$$

- Finding most likely value means maximizing probability
- Maximizing negative exponential means minimizing:

$$
J=\frac{1}{2}\left[x^{2}+(y-1)^{2}+(y-x)^{2}\right]
$$

- Example of least squares cost function.

Solution Continued

$$
J=\frac{1}{2}\left[x^{2}+(y-1)^{2}+(y-x)^{2}\right]
$$

- To maximize set $\frac{\partial J}{\partial x}=0$ and $\frac{\partial J}{\partial y}=0$

$$
\begin{array}{r}
2 x-y=0 \\
2 y-x-1=0 \tag{2}
\end{array}
$$

- $x=\frac{1}{3}, y=\frac{2}{3}$

Illustrating Solution

- Prior estimate is intersection of red and blue lines $(0,1)$.
- Solution is pulled directly towards model;
- Solution is compromise between prior, measurement and model;
- Solution depends on both values and uncertainties.

More detail on Uncertainties

- Prior PDF is distribution of true value deliberately ignoring measurements we intend to use. Often expressed as distribution around value but not necessary.
- PDF of data is distribution of true value, usually distributed around a measurement;
- PDF of model describes distribution of true value given particular value of "unknown". Almost never available.

First Simplification

- Often we are not interested in estimating the observable;
- For Gaussian PDFs we can pretend our model is perfect and add observational and modelling error variances (Tarantola 2004, P202);
- Thus

$$
J=\frac{1}{2}\left[x^{2}+(y-1)^{2}+(y-x)^{2}\right]
$$

becomes

$$
J^{*}=\frac{1}{2}\left[x^{2}+(x-1)^{2} / 2\right]
$$

- Yields $x=\frac{1}{3}$ but not $y=\frac{2}{3}$.

Recursive estimation

- Multiplication of PDFs can be done in any order and many at a time or singly;
- If we preserve the full PDF we can include observations as they arrive;
- For Gaussians PDF described by means and variances;
- Information is always added so that PDFs are always refined.

Batch and Sequential Methods

BATCH

- Handle all obs at once;
- PDFs for priors and obs unrestricted;
- Model error hard to include;
- Classic example 4dVar for weather prediction.

SEQUENTIAL

- Handle obs as they arrive;
- PDFs for obs restricted (time correlations hard);
- Model error handled very naturally;
- Kalman Filter.

A few Example Applications

- What are the unknowns?
- What is the prior estimate?
- What are the observations?
- What is the model?
- How do they handle the time domain?

Numerical Weather Prediction 4dVar

- Unknown is 3d grid of atmospheric variables at fixed time;
- Prior is previous forecast;
- Observations include in situ and satellite measurements over a fixed time window;
- Model combines dynamic evolution of atmosphere with observation operators;
- All observations handled at once;
- doesn't usually have explicit model error.

Numerical Weather Prediction, Kalman filtering

- Unknown is 3d grid of atmospheric variables at each time;
- Prior is previous posterior;
- Observations include in situ and satellite measurements within one timestep;
- Dynamic model and observation operators separated;
- Always has explicit model error.

Atmospheric Flux Inversion

- Unknown is space-time distribution of surface fluxes;
- Prior often comes from biogeochemical model;
- Observations are atmospheric concentration;
- Model is atmospheric transport;
- All observations usually handled at once;
- Model error sometimes handled via model ensemble.

Biogeochemical data assimilation

- Confusing terminology;
- Unknowns are parameters in model;
- Priors from independent experiment or literature;
- Many different observations (fluxes, concentrations, vegetation indices, ocean colour etc);
- Dynamic model and obs operators separated;
- Equally split between batch and sequential.

Linear Gaussian Case

- Unknowns and data are vectors \vec{x} and \vec{d};
- σ^{2} replaced with variance/covariance matrices \mathbf{C} for \vec{x} and \vec{d};
- Model M becomes matrix \mathbf{M};
- Use usual simplification of assuming perfect model and adding data and model uncertainties.

Solution

$$
P(\vec{x})=K \frac{1}{\sqrt{\operatorname{det} \mathbf{C}\left(\vec{x}_{0}\right) \operatorname{det} \mathbf{C}(\vec{y})}} \exp -\frac{1}{2}\left(\vec{x}-\vec{x}_{0}\right)^{T} \mathbf{C}^{-1}\left(\vec{x}_{0}\right)\left(\vec{x}-\vec{x}_{0}\right) \exp -\frac{1}{2}(\mathbf{M} \vec{x}-\vec{y})^{T} \mathbf{C}
$$

Minimize

$$
J=\left(\vec{x}-\vec{x}_{0}\right)^{T} \mathbf{C}^{-1}\left(\vec{x}_{0}\right)\left(\vec{x}-\vec{x}_{0}\right)+(\mathbf{M} \vec{x}-\vec{y})^{T} \mathbf{C}^{-1}(\vec{y})(\mathbf{M} \vec{x}-\vec{y})
$$

Continued

$$
J=\left(\vec{x}-\vec{x}_{0}\right)^{T} \mathbf{C}^{-1}\left(\vec{x}_{0}\right)\left(\vec{x}-\vec{x}_{0}\right)+(\mathbf{M} \vec{x}-\vec{y})^{T} \mathbf{C}^{-1}(\vec{y})(\mathbf{M} \vec{x}-\vec{y})
$$

Yields

$$
\begin{gathered}
\vec{x}=\vec{x}_{0}+\mathbf{C}\left(\vec{x}_{0}\right) \mathbf{M}^{T}\left[\mathbf{M C}\left(\vec{x}_{0}\right) \mathbf{M}^{T}+\mathbf{C}(\vec{y})\right]^{-1}\left(\vec{y}-\mathbf{M} \vec{x}_{0}\right) \\
\mathbf{C}^{-1}(\vec{x})=\mathbf{C}^{-1}\left(\vec{x}_{0}\right)+\mathbf{M}^{T} \mathbf{C}^{-1}(\vec{y}) \mathbf{M}
\end{gathered}
$$

Summary

- Data assimilation is an example of Bayesian Inference;
- BI itself follows from rules for combining PDFs;
- Techniques like least squares minimisation are special cases for particular types of PDF;
- Most approaches such as Kalman Filtering and 4dVar can be expressed with this formalism.

