Data assimilation in biogeochemistry: Adapting the paradigm of numerical weather prediction

Peter Rayner University of Melbourne

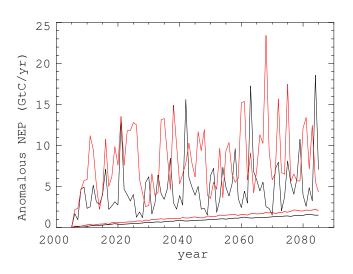
Outline of series

- 1. Basic approach with some simple examples;
- 2. What can go wrong and how would we know?
- 3. Some advanced uses, model development and evaluation.

Outline for Lecture One

- Motivation: An example of data assimilation for climate;
- The minefield of nomenclature and notation;
- Data assimilation as Bayesian inference;
- Some simple examples;
- Looking hard at each component.

Motivation



Uncertainty in terrestrial uptake, 2000–2090. Black lines = current climate, red = climate change. Thin lines = original model, thick = after data.

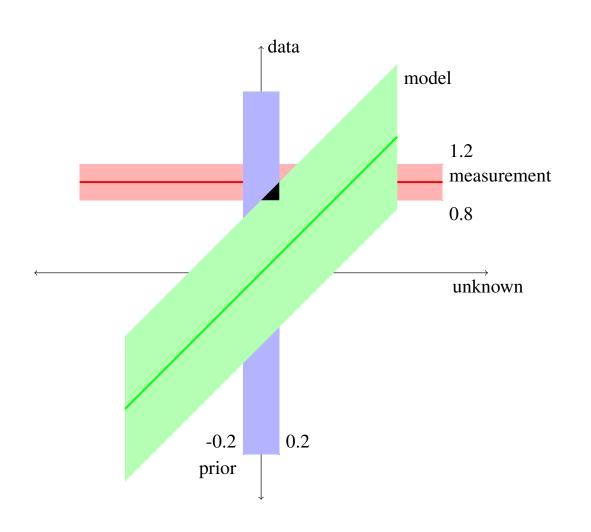
- Rayner et al., Phil. Trans. 2010;
- Uncertainties completely dominated by climate change;
- Greatly reduced by confronting with data.

The problem

- To improve our knowledge of the state and functioning of a physical system given some observations.
- "State" means the value of physical quantities which may evolve, usually the variables in a numerical model;
- "Function" means the fixed values or even functional forms of the laws governing the system.

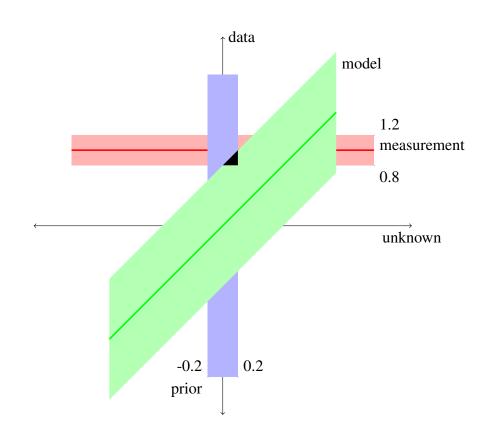
	Name	Symbol	Description	Examples
_	Parameters	$ec{p}$	Quantities not	ξ (buffer
			changed by model	factor), b_a
				(terrestrial flux
				amplitude)
	State variables	$ec{v}$	Quantities altered by model	leaf area, DIC
	$Unknowns^1$	$ec{x}$	Quantities exposed to	ξ , $c_I(t=0)$
			optimisation	
	Observables	$ec{o}$	Measurable	c_A , total
			quantities, may	carbon
			be in $ec{v}$	
	Observation		Transforms $ec{v}$ to $ec{o}$	1, $c_I + c_O$
	operator			
	Model	\mathbf{M}	Predicts \vec{v} given \vec{p} and $\vec{v}(t=0)$	
	Data	$ec{d}$	Measured values of \vec{o}	

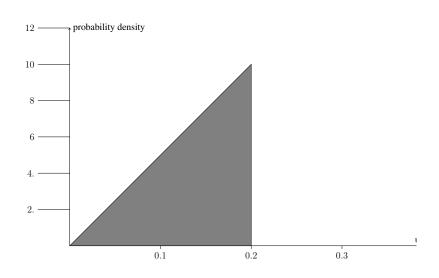
Data Assimilation in One Picture



- Unknown on X-axis, obs on Y-axis;
- Light-blue = prior unknown
- Light-red = obs
- Green = model;
- Black = solution.

Well, almost one picture





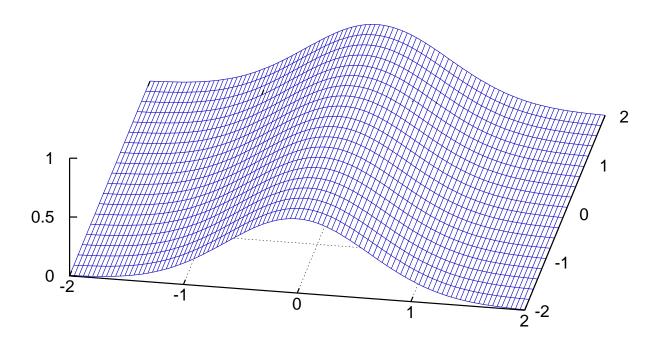
Solution is multiplication of input PDFs.

Final PDF projects triangle onto "unknown" axis.

Notes

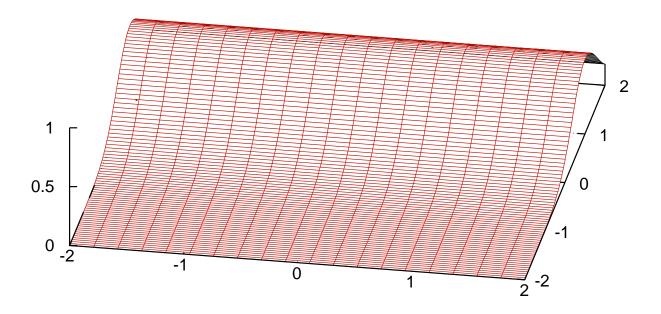
- Solution is multiplication of PDFs;
- Solution can be constructed with only forward models;
- Normalization doesn't usually matter.

Gaussian Prior



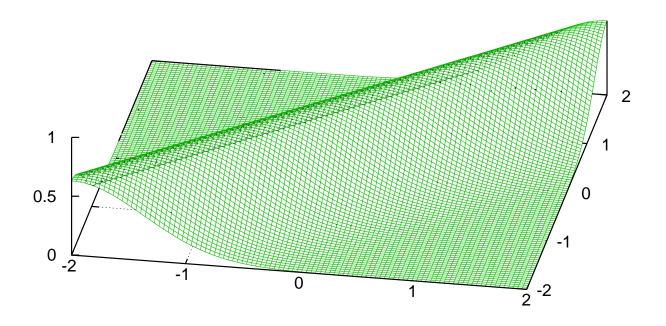
$$\frac{1}{\sqrt{2\pi}\sigma_P}\exp{-\frac{x^2}{2\sigma_P^2}}$$

Data



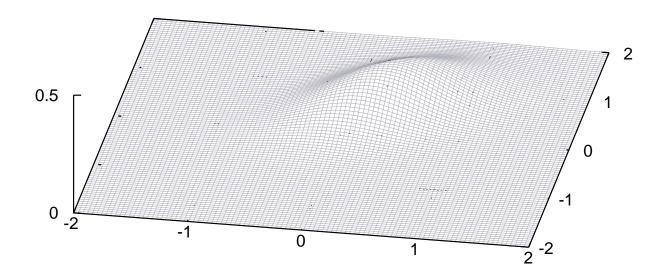
$$\frac{1}{\sqrt{2\pi}\sigma_D}\exp{-\frac{(y-1)^2}{2\sigma_D^2}}$$

Model



$$\frac{1}{\sqrt{2\pi}\sigma_M}\exp{-\frac{(y-M(x))^2}{2\sigma_M^2}}$$

Prior plus Data plus Model



$$\frac{1}{\sqrt{2\pi}\sigma_P\sigma_D\sigma_M}\exp{-\frac{x^2}{2\sigma_P^2}}\times\exp{-\frac{(y-1)^2}{2\sigma_D^2}}\times\exp{-\frac{(y-M(x))^2}{2\sigma_M^2}}$$

"Solving" the Inverse Problem

- The joint PDF *is* the solution;
- For Gaussians the solution can be represented by a mean and variance;
- These can be misleading.

A simple example

$$P(x,y) = \frac{1}{\sqrt{2\pi}\sigma_x\sigma_y\sigma_M} \exp{-\frac{(x-x_0)^2}{2\sigma_x^2}} \times \exp{-\frac{(y-D)^2}{2\sigma_y^2}} \times \exp{-\frac{(y-D)^2}{2\sigma_M^2}}$$

- $x_0 = 0$, D = 1, M = 1, $\sigma_x = \sigma_y = \sigma_M = 1$;

$$P(x,y) = \frac{1}{\sqrt{2\pi}} \exp\left[-\left[\frac{x^2}{2} + \frac{(y-1)^2}{2} + \frac{(y-x)^2}{2}\right]\right]$$

Solution Continued

$$P(x,y) = \frac{1}{\sqrt{2\pi}} \exp\left[-\left[\frac{x^2}{2} + \frac{(y-1)^2}{2} + \frac{(y-x)^2}{2}\right]\right]$$

- Finding most likely value means maximizing probability
- Maximizing negative exponential means *minimizing*:

$$J = \frac{1}{2} \left[x^2 + (y - 1)^2 + (y - x)^2 \right]$$

• Example of least squares cost function.

Solution Continued

$$J = \frac{1}{2} \left[x^2 + (y - 1)^2 + (y - x)^2 \right]$$

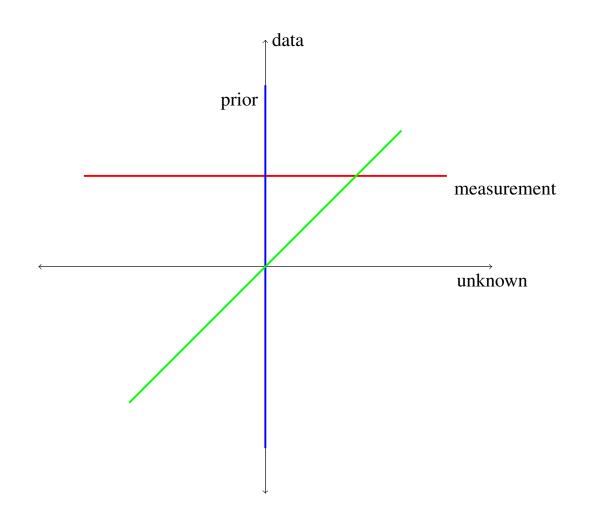
• To maximize set $\frac{\partial J}{\partial x}=0$ and $\frac{\partial J}{\partial y}=0$

$$2x - y = 0 (1)$$

$$2y - x - 1 = 0 (2)$$

•
$$x = \frac{1}{3}, y = \frac{2}{3}$$

Illustrating Solution



- Prior estimate is intersection of red and blue lines (0, 1).
- Solution is pulled directly towards model;
- Solution is compromise between prior, measurement and model;
- Solution depends on both values and uncertainties.

More detail on Uncertainties

- Prior PDF is distribution of true value deliberately ignoring measurements we intend to use. Often expressed as distribution around value but not necessary.
- PDF of data is distribution of true value, usually distributed around a measurement;
- PDF of model describes distribution of true value given particular value of "unknown". Almost never available.

First Simplification

- Often we are not interested in estimating the observable;
- For Gaussian PDFs we can pretend our model is perfect and add observational and modelling error variances (Tarantola 2004, P202);
- Thus

$$J = \frac{1}{2} \left[x^2 + (y - 1)^2 + (y - x)^2 \right]$$

becomes

$$J^* = \frac{1}{2} \left[x^2 + (x-1)^2 / 2 \right]$$

• Yields $x = \frac{1}{3}$ but not $y = \frac{2}{3}$.

Recursive estimation

- Multiplication of PDFs can be done in any order and many at a time or singly;
- If we preserve the full PDF we can include observations as they arrive;
- For Gaussians PDF described by means and variances;
- Information is always added so that PDFs are always refined.

Batch and Sequential Methods

BATCH

- Handle all obs at once;
- PDFs for priors and obsunrestricted;
- Model error hard to include;
- Classic example 4dVar for weather prediction.

SEQUENTIAL

- Handle obs as they arrive;
- PDFs for obs restricted (time correlations hard);
- Model error handled very naturally;
- Kalman Filter.

A few Example Applications

- What are the unknowns?
- What is the prior estimate?
- What are the observations?
- What is the model?
- How do they handle the time domain?

Numerical Weather Prediction 4dVar

- Unknown is 3d grid of atmospheric variables at fixed time;
- Prior is previous forecast;
- Observations include in situ and satellite measurements over a fixed time window;
- Model combines dynamic evolution of atmosphere with observation operators;
- All observations handled at once;
- doesn't *usually* have explicit model error.

Numerical Weather Prediction, Kalman filtering

- Unknown is 3d grid of atmospheric variables at *each* time;
- Prior is previous posterior;
- Observations include in situ and satellite measurements within one timestep;
- Dynamic model and observation operators separated;
- Always has explicit model error.

Atmospheric Flux Inversion

- Unknown is space-time distribution of surface fluxes;
- Prior often comes from biogeochemical model;
- Observations are atmospheric concentration;
- Model is atmospheric transport;
- All observations usually handled at once;
- Model error sometimes handled via model ensemble.

Biogeochemical data assimilation

- Confusing terminology;
- Unknowns are parameters in model;
- Priors from independent experiment or literature;
- Many different observations (fluxes, concentrations, vegetation indices, ocean colour etc);
- Dynamic model and obs operators separated;
- Equally split between batch and sequential.

Linear Gaussian Case

- Unknowns and data are vectors \vec{x} and \vec{d} ;
- σ^2 replaced with variance/covariance matrices ${\bf C}$ for \vec{x} and \vec{d} ;
- Model M becomes matrix M;
- Use usual simplification of assuming perfect model and adding data and model uncertainties.

Solution

$$P(\vec{x}) = K \frac{1}{\sqrt{\det \mathbf{C}(\vec{x}_0) \det \mathbf{C}(\vec{y})}} \exp{-\frac{1}{2}(\vec{x} - \vec{x}_0)^T \mathbf{C}^{-1}(\vec{x}_0)(\vec{x} - \vec{x}_0) \exp{-\frac{1}{2}(\mathbf{M}\vec{x} - \vec{y})^T \mathbf{C}^{-1}(\vec{x}_0)}}$$

Minimize

$$J = (\vec{x} - \vec{x}_0)^T \mathbf{C}^{-1} (\vec{x}_0) (\vec{x} - \vec{x}_0) + (\mathbf{M}\vec{x} - \vec{y})^T \mathbf{C}^{-1} (\vec{y}) (\mathbf{M}\vec{x} - \vec{y})$$

Continued

$$J = (\vec{x} - \vec{x}_0)^T \mathbf{C}^{-1} (\vec{x}_0) (\vec{x} - \vec{x}_0) + (\mathbf{M}\vec{x} - \vec{y})^T \mathbf{C}^{-1} (\vec{y}) (\mathbf{M}\vec{x} - \vec{y})$$

Yields

$$\vec{x} = \vec{x}_0 + \mathbf{C}(\vec{x}_0)\mathbf{M}^T \left[\mathbf{M}\mathbf{C}(\vec{x}_0)\mathbf{M}^T + \mathbf{C}(\vec{y})\right]^{-1} (\vec{y} - \mathbf{M}\vec{x}_0)$$
$$\mathbf{C}^{-1}(\vec{x}) = \mathbf{C}^{-1}(\vec{x}_0) + \mathbf{M}^T\mathbf{C}^{-1}(\vec{y})\mathbf{M}$$

Summary

- Data assimilation is an example of Bayesian Inference;
- BI itself follows from rules for combining PDFs;
- Techniques like least squares minimisation are special cases for particular types of PDF;
- Most approaches such as Kalman Filtering and 4dVar can be expressed with this formalism.