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Outline of series

1. Basic approach with some simple examples;
2. What can go wrong and how would we know?

3. Some advanced uses, model development and evaluation.



Outline for Lecture One

e Motivation: An example of data assimilation for climate;
e [ he minefield of nomenclature and notation:

e Data assimilation as Bayesian inference;

e Some simple examples:

e Looking hard at each component.



Motivation
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e Rayner et al., Phil. Trans.
2010;
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e Uncertainties
dominated by
change;

o Greatly reduced by
confronting with data.



The problem

e To improve our knowledge of the state and functioning of a
physical system given some observations.

e “State’ means the value of physical quantities which may
evolve, usually the variables in a numerical model;

e "‘Function” means the fixed values or even functional forms of
the laws governing the system.



Name Symbol Description Examples
Parameters D Quantities not & (buffer
changed by model factor), ba
(terrestrial flux
amplitude)
State variables U Quantities altered by leaf area, DIC
model
Unknowns! T Quantities exposed to &, c7(t = 0)
optimisation
Observables o Measurable CA, total
quantities, may carbon
be in v
Observation Transforms ¥ to 0 1, c; + co
operator
Model M Predicts ¢ given p and
v(t = 0)
Data d Measured values of ¢



Data Assimilation in One Picture
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Well, almost one picture
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Solution is multiplication Final PDF projects
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Notes

e Solution is multiplication of PDFs;
e Solution can be constructed with only forward models;

e Normalization doesn't usually matter.



Gaussian Prior
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Prior plus Data plus Model
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“Solving” the Inverse Problem

e The joint PDF /s the solution;

e For Gaussians the solution can be represented by a mean and
variance;

e [hese can be misleading.



A simple example

1 (z — @) (y — D)’ (y — M(x))?

P(x,y) = exp — Xexp — Xexp —
( y) \/ 27TUnyJM 20'323 20’5 20'12\4

e 10=0,D=1 M=1,0,=0y =0pm =1,

e Multiplying exponentials «<» adding exponents;

P(Zlf,y) —



Solution Continued

P(x, y) _ 1 xQ <y B 1)2 (y o $>2

o P

e Finding most likely value means maximizing probability

e Maximizing negative exponential means minimizing:

J=%[w2+<y—1>2+<y—x)2}

e Example of least squares cost function.



Solution Continued

J=%[w2+<y—1>2+<y—x)2}

e To maximize set 22 = (0 and &4 = 0
Ox oy

20—y = 0
2y—xz—1 = 0



prior

data

lllustrating Solution

measurement

unknown

Prior estimate is intersection of
red and blue lines (0, 1).

Solution is pulled directly
towards model;

Solution is compromise between
prior, measurement and model;

Solution depends on both values
and uncertainties.



More detail on Uncertainties

e Prior PDF is distribution of true value deliberately ignoring measurements
we intend to use. Often expressed as distribution around value but not
necessary.

e PDF of data is distribution of true value, usually distributed around a
measurement;

e PDF of model describes distribution of true value given particular value of
“unknown”. Almost never available.



First Simplification

Often we are not interested in estimating the observable;

For Gaussian PDFs we can pretend our model is perfect and add
observational and modelling error variances (Tarantola 2004, P202);

Thus ]
J=5 "+ -1+ (-]
becomes |
J* = 5 2%+ (z — 1)%/2]

: 1 2
Yields © = 3 but not y = £.



Recursive estimation

Multiplication of PDFs can be done in any order and many at a time or
singly;

If we preserve the full PDF we can include observations as they arrive;

For Gaussians PDF described by means and variances;

Information is always added so that PDFs are always refined.



Batch and Sequential Methods

BATCH

Handle all obs at once:

PDFs for priors
unrestricted:

Model error hard to include;

Classic example
weather prediction.

and

4dVar

obs

for

SEQUENTIAL

Handle obs as they arrive;

PDFs for obs restricted (time
correlations hard);

Model error
naturally;

Kalman Filter.

handled

very



A few Example Applications

What are the unknowns?
What is the prior estimate?
What are the observations?

What is the model?

How do they handle the time domain?



Numerical Weather Prediction 4dVar

Unknown is 3d grid of atmospheric variables at fixed time;
Prior is previous forecast;

Observations include in situ and satellite measurements over a fixed time
window:;

Model combines dynamic evolution of atmosphere with observation
operators;

All observations handled at once:

doesn't usually have explicit model error.



Numerical Weather Prediction, Kalman filtering

Unknown is 3d grid of atmospheric variables at each time;

Prior is previous posterior;

Observations include in situ and satellite measurements within one timestep;
Dynamic model and observation operators separated;

Always has explicit model error.



Atmospheric Flux Inversion

Unknown is space-time distribution of surface fluxes;
Prior often comes from biogeochemical model;
Observations are atmospheric concentration;

Model is atmospheric transport;

All observations usually handled at once;

Model error sometimes handled via model ensemble.



Biogeochemical data assimilation

Confusing terminology;
Unknowns are parameters in model;
Priors from independent experiment or literature;

Many different observations (fluxes, concentrations, vegetation indices,
ocean colour etc);

Dynamic model and obs operators separated;

Equally split between batch and sequential.



Linear Gaussian Case

Unknowns and data are vectors Z and d;
o replaced with variance/covariance matrices C for & and d;
Model M becomes matrix M;

Use usual simplification of assuming perfect model and adding data and
model uncertainties.
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Yields

Continued



Summary

Data assimilation is an example of Bayesian Inference;
Bl itself follows from rules for combining PDFs;

Techniques like least squares minimisation are special cases for particular
types of PDF;

Most approaches such as Kalman Filtering and 4dVar can be expressed with
this formalism.



