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Lecture content

u CO2 and climate

u The global C cycle and the role of the
terrestrial biosphere: pools, fluxes and
processes

u Measuring land-atmosphere fluxes: global,
regional, local

u Uncertainties



Vostok: Past climate and CO2

Petit et al., Nature, 1999



CO2, NH4 and N2O in the last 1000 years

From: IPCC, Climate

Change, 2001
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Keeling CO2 plots

IPCC, Climate Change, 2001



CO2: emissions vs atmospheric increase

From: ‘Sinks for Anthropogenic Carbon’, Physics Today, August

2002, Jorge L. Sarmiento and Nicolas Gruber



The global C cycle and the role of the

terrestrial biosphere: pools, fluxes and

processes



Ocean uptake

1.9 Pg C yr-1

Fossil fuel release

5.4 Pg C yr-1

Accumulation in atmosphere

3.3 Pg C yr-1

Land uptake?

(1.9 by difference)

Deforestation

1.7 Pg C yr-1?

The C cycle: 1980s budget of anthropogenic carbon dioxide. 



The Global Carbon Cycle

From IPCC 2007



Raupach et al. 2007, PNAS
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Biology: ocean

productivity.

Physics: CO2

solubility

Coupled

through ocean

dynamics

Biology/ecology:

fixing C in

ecosystems.

Strongly

coupled to the

water cycle.

Other important

trace gases:

methane, VOCs

runoff

Domain coupling in the carbon cycle



Recent Carbon Trends and the
Global Carbon Budget

updated to 2006

GCP-Global Carbon Budget team:
Pep Canadell, Philippe Ciais, Thomas Conway, Chris Field, Corinne Le Quéré, Skee Houghton,

Gregg Marland, Mike Raupach, Erik Buitenhuis, Nathan Gillett

Last update: 15 November 2007



2.

The perturbation of the global
carbon cycle (1850-2006)
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Perturbation of Global Carbon Budget (1850-2006)

Le Quéré, unpublished; Canadell et al. 2007, PNAS
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Perturbation of Global Carbon Budget (1850-2006)

Le Quéré, unpublished; Canadell et al. 2007, PNAS
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Le Quéré, unpublished; Canadell et al. 2007, PNAS



atmospheric CO2
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atmospheric CO2

ocean

land

fossil fuel emissions

deforestation

7.6

1.5

4.1

2.2

2.8

2000-2006
C

O
2 

flu
x 

(P
g 

C
 y

-1
)

S
in

k
S

ou
rc

e

Time (y)

Perturbation of Global Carbon Budget (1850-2006)

Le Quéré, unpublished; Canadell et al. 2007, PNAS



Canadell et al. 2007, PNAS

Perturbation of the Global Carbon Budget (1959-2006)
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The big questions

1. What role does the land surface play in modulating

and controlling atmospheric CO2?

2. Where are the major sources and sinks, and what is

their likely long-term behaviour?

3. What are the key processes, and how will they

interact in a changing climate?

4. What observing networks are needed to monitor

and understand the carbon cycle?

5. Can we manage the system?
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Water and carbon cycles

Primary
Production

(GPP)

CO2

H2O

Transpiration
! Water and carbon cycles are closely 
linked

! Stomata control CO
2
 and H

2
O exchange

! Soil moisture controls stomatal aperture
! Leaf area controls rain interception
! Soil moisture controls leaf area
! Soil moisture controls C decomposition

Stomata

!
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Measuring surface-atmosphere fluxes:

local scales



Measuring NEE from flux towers



Eddy covariance CO2 and H2O fluxes:

Provision of flux data for key target CTCD sites



CarboAge NEP net C fluxes over one rotation.

Spruce on a peaty gley: N. England

(Mencuccini, Rayment & Grace in prep)

S NEP " 149.3 tC

/ha over 40 years,

i.e., 3.7 t C ha -1 y-1



1 Chamber Unit

1 Control Unit

York: forest carbon cycle



CO2 efflux
Biomass

CO2 uptake

Plant

Soil

Soil organic matter

Stable soil organic carbon

turnover

Litter, roots, exudation

turnover

Atmosphere

Soil respiration: a component flux

Mycorrhizas

Mycorrhizas

DOC

leaching
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Temperature 5cm depth (
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Global C stocks in vegetation and soils

24772011466151.2Total

131128316.0Croplands

240225153.5Wetlands

12712169.5Tundra

199191845.5Deserts & semi-deserts

304295912.5Temperate grasslands

3302646622.5Tropical savannas

5594718813.7Boreal forests

1591005910.4Temperate forests

42821621217.6Tropical forests

TotalSoilsVegetation

Carbon Stocks (Gt C)Area (106km2)Biome



Proportion of carbon in vegetation and soils



Measuring surface-atmosphere fluxes:

regional scales



Atmospheric inversion



Inference of sinks from flask measurements



Current knowledge on carbon sources and sinks

(from atmospheric inversions)

Land carbon sinks (<0) and sources (>0) for the 1980s (plain bars) and for

1990-1996 (hatched bars) (Heimann et al., 2001)

1-2 Gigatons sequestered on land North of 30°;

elsewhere, sources match sinks



                             Gurney et al.    Jacobson et al.     Rödenbeck et al.   Baker et al.  Stephens et al. 

                                   2002                2007                       2003                  2006               2007

                                1992-96          1992-96          1992-96   1996-99     1992-1996       1992-96

Transport Model   12 Models      12 Models          TM3         TM3      12 Models  {TM3, UCI, JMA}  TM3

                                   T3L1               T3L1                                               T3L2          T3L1*   T3L2     T3L2

Atmosphere Land Flux

_____________________________________________________________________________________

S Hem (<20S)         -0.2±1.1  -2.4±2.0      0.0±0.2  0.1±0.2 -1.2        0.1±1.1                  

Tropics                     1.1±1.3    4.2±2.7      -1.0±0.4 -0.8±0.4  1.6         0.7±1.4 -0.1±0.8     1.0

N Hem (>20N)      -2.3± 0.6  -2.9±1.0    -0.7±0.2 -0.4±1.0 -2.7       -2.2±0.6  -1.5±0.6  -2.2

                             __________________________________________________________________

                                   -1.4                  -1.1            -1.8          -1.3        -2.3          -1.4        

Compilation of atmospheric inversion results for Northern Hemisphere 

and Southern Hemisphere Land sink (slide from Emanuel Gloor)



Disturbance fluxes
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“Bottom up” estimates
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substantially lower fluxes
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Estimated Carbon Flux from Tropical

Deforestation and Regrowth for 1980s and

90s
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Conclusions

u The land surface plays a central role in the global

carbon cycle, but is the least well-known and

understood component of the cycle.

u Quantifying atmosphere-land carbon fluxes requires

measurements at many different scales.

u The carbon cycle is reasonably well characterised at

the global scale, though its likely evolution is hard to

predict

u There are very large uncertainties in our regional scale

quantification of the carbon cycle



The C cycle in the Earth system

u The large-scale modification of land cover is inextricably bound up
with modifications of the carbon cycle. Effects:

– resources available to humans

– climate modification by altering albedo

– primary cause of loss of biodiversity.

u Changes in the carbon cycle have major effects on the water
cycle affecting

– river runoff (i.e. freshwater supply),

– soil moisture and

– water transport to the atmosphere (globally, the volume of
transpired water is nearly equal to the total river runoff).

These changes feed back on vegetation growth.

u All aspects of the Earth system (land, ocean, atmosphere,
cryosphere) are involved in the C cycle.



The C cycle in the Earth system

u The basic driver of anthropogenic climate change is the imbalance
between fluxes of CO2 and CH4 to and from the atmosphere;

u Management of the carbon cycle, as enshrined in the Kyoto
Protocol, is the only international treaty focused on slowing
climate change. Principal mechanisms:

– reduce emissions

– increase the carbon stored in forest ecosystems.

Current negotiations seek to include reduction in deforestation
and forest degradation in the post-2012 KP.

u Lack of quantitative understanding of feedbacks between climate
and the land carbon cycle is a major area of uncertainty in climate
prediction (IPCC 2007).
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Reducing uncertainties in the C budfet

Our objective: To greatly improve our estimates
and predictions of the terrestrial carbon cycle by
effectively combining Earth Observation
measurements with biospheric process models
and other data.

Key science questions:

1. where are the carbon sources and sinks, how
do they vary and what processes underlie them?

2. why is the equatorial land surface carbon
neutral, despite rapid deforestation (and how
rapid is this)?



Alice Holt: forest carbon cycle



The Carbon Cycle

http://earthobservatory.nasa.gov/Library/CarbonCycle/carbon_cycle4.html



Greenhouse gases (1)

IPCC, Climate Change, 2001



Global distribution of sinks over the period 1982-

2001 (flask inversion method)

Roedenbeck et al. (2003) Atmos Chem Phys Discussions 3, 2575-2659.

Sinks

green and

blue

Sources

red and

yellow



Reconciling Top-Down and Bottom-Up Estimates of the

European Terrestrial Carbon Balance - State-of-the-Art

Corrections attributed to:

A Fossil emission uncertainty

B Non-CO2 emissions

  (a.o. CO)

C Trade product flows

D Wood products

Janssens et al., Science, in revision, 2003
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• Discrimination of sources/sinks between latitude bands is

relatively easy

• Localising sinks in the same latitude bands is subject to

wide error.

• Fluxes over ocean basins are easier to constrain than

continental fluxes over large regions.

Atmospheric Inversion using ground-based measurements to

locate CO2 sources and sinks: what we can do now



Russian Doll inversions

20 regions over Europe

     Input data set:

112  stations, year 1998-2000

Gurney et al. data set:

76 stations, year 1992-1996

Slide from P. Ciais



Annual optimized fluxes over Europe
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The importance of the land surface

The terrestrial biosphere is a crucial element of the carbon

cycle

# as a source

# as a sink

# as an instrument of policy
BUT, its

# status

# dynamics

# evolution

are the least understood and most uncertain elements in

the carbon cycle, at all scales.



Carbon Budget during 1989-98

 (Gt C y-1; Intergovernmental Panel on Climate Change, 2000)

Fossil fuels,

cement
6.3 ± 0.6

Land use change
1.6 ± 0.8

Increase in

atmospheric

CO2

 3.3  ± 0.2

Ocean uptake
2.3 ± 0.8

Biospheric sink
2.3 ±1.3



Carbon Budget in the 1990’s
 (Gt C y-1; Royal Society Report, 2001)

Fossil fuels,

cement
6.4 ± 0.4

Land use change

(mainly tropical

deforestation)
1.7 ± 0.8

Increase in

atmospheric

CO2

 3.2 ± 0.1

Ocean uptake
1.7 ± 0.5

Tropical

biospheric sink
1.9 ± 1.3

Temperate and

boreal

biospheric sink
1.3 ± 0.9



Global soil C stocks

IGBP* IGBP WBGU
‡
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Total C stock   1566  1497  2011  2079  654  

 

(Kutsch, Bahn, Heinemeyer, 2007)

(C stocks in Gt C = Pg C =  1015 g C) 



Regional observations tool-kit

u Allows estimates
of the carbon
balance over
large regions
using inverse
modelling

u Quantifies
interannual
variations in
fluxes in
response to
climate variability

u Multiple species
approach



Tall Tower Angus




