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Abstract

Imaging the terrestrial 1onosphere 1s becoming possible since the installation of dense GPS networks, with a temporal and spatial resolution allowing the detection of 1onospheric seismic waves. Since the 1960s,
ionospheric seismic waves are detectable almost punctually after large shallow earthquakes, with current minimum magnitude of 6.5. Most recently, the use of dense networks gave the way to a global
visualization of the horizontal propagation of co-seismic 1onospheric disturbances. Such a use of a Global Positioning System array, and the sounding capability of the method above the ocean, prove the potential
of this method as a complement to more traditional techniques used in seismology.

From now on, after imaging seismic waves 1n the ionosphere, the challenge 1s the characterization of the seismic source, whose rupture involves coupling mechanisms between the moving solid earth and its
surrounding atmosphere. The study presented here 1s based on the Total Electronic Content variations mapped close to the source and shortly after the Tokachi-Oki earthquake (M=8.3) that occurred on
September, 25, 2003, in Japan. The first fundamental source parameters derived from 1 Hz sampled data will be reminded here. The rupture process 1s then pre-modelled in reference to the co-seismic
displacements estimated by other techniques. Therefore, a modelling of the horizontal propagation of acoustic waves generated by three aligned separated sources i1s developed. The preliminary results of the
subsequent GPS data inversion tests will be presented. Finally, for physical modelling of the vertical propagation, we used ray tracing in the atmosphere, in order to study the effects of the near-field pulse
spreading in acoustic domain as well as the redistribution of the charged particles under geomagnetic dependency. This could explain the south-western directivity of most of the seismic perturbations observed in
the TEC above Japan (cf. [Heki&Ping,2005]) and first observed in California by [Calais et al., 1998].
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Rayleigh waves Charged particules are reorganized under neutral wind effect. This 1s
modelled by a 3D ionospheric coupling program by [E.A Kherani et al.].
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Phase inversions observed at TEC
images (see fig.5) are interpreted
here as interferences between
separated sources, as shown by

fig.4.

[Yagi, Y., 2004] corroborates this
assumption : he described 3
separated coseismic displacements
focui aligned along the fault. So we
modelled each of them as an acoustic
source
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The inversion procedure 1s posed as
a least-square problem. Wavelengths
exceeding 300 km are found as
shown fig.5, so other parameters —
have to be taken into account.
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the electronic density variation (as calculated from inversion procedure. trajectories of rays are deflected (bottom,
described on fig.7). Bottom : synthetic of the inversion represented for increasing launch angles. The
result. velocity is modelled by a pulse function (top right).

0.1
0.08 43

0.06

- 10.04

o » BN

- 40.02 - :
N

427 ; if‘,n- {-? 'ﬁ: : . e BB — 4 5 /o
"l#ﬁ“-"h"i:: e g
-0.04 r | B2 _ 2 O%
~0.06 ==

- U \\ o

o " em | B1=35%

41"

150° 143" 144° ( Yag‘f; 2 004)

r 1-0.02

4

~\
~\

-
Conclusions and perspectives:
Basic 1nversion here supplies a first fit of experimental data. Current developments are considering a more realistic modelling of source and atmospheric
\propagation of the synthetized acoustic waves. aiming to constrain more completely the parameters of the rupture process by a final inversion.
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