New Technologies, Applications and Reanalysis

lecture 3

Tony McNally ECMWF

Advanced IR sounders

Advanced infrared sounders: AIRS and IASI

AIRS

- Operational at ECMWF since October 2003.
- 324 channels received in NRT.
- One FOV in nine used.
- Up to 155 channels may be assimilated (CO₂ and H₂O bands).

IASI

- Operational at ECMWF since June 2007.
- 8461 channels received in NRT.
- All FOVS received; only 1-in-4 used.
 - 366 Channels routinely monitored.
- Up to 168 channels may be assimilated (CO₂ band only).

Advanced infrared sounders: AIRS and IASI

Better measure of improved resolution is provided by the averaging kernels

IASI forecast impact

GPS Radio Occultation

Radio occultation geometry

atmosphere

- CHAMP, COSMIC, METOP-GRAS
- •The impact of the atmosphere on the signal propagation depends on the refractivity => the vertical profile of the refractivity (and further down temperature, humidity and pressure) at the location of the ray perigee can be inverted from the observation

LEO

Radiosonde comparisons for Antarctica 12h forecasts

Doppler Wind LIDAR

ADM-Aeolus

UV lidar (355 nm) with two receivers

- Mie (aerosol), Rayleigh (molecules)
- both use direct detection

Wind profiles from surface to 30 km with resolution varying from 0.5 to 2 km

- vertical bins configurable in flight
- HLOS component only
- direction 7° from zonal at equator
- 6 hour coverage shown

Environmentalmonitoring

ECMWF role in GMES

Global Monitoring for Environment and Security

I Reactive gases

Couple IFS with global CTMs, carrying O₃, CO, NO₂, SO₂ and HCHO in the IFS, and develop data assimilation

Aerosols

 Implement in IFS, based on externally-produced parameterizations, and develop data assimilation

I Greenhouse gases

- Introduce CO₂ and CH₄ into global ECMWF weather forecast model (IFS) and develop data assimilation
- I Acquisition of global data, and provision of support for regional air-quality forecasting
- Near-real-time and retrospective (2003-2007) running of integrated global system

Three types of product from ECMWF real-time system

| Model simulation

- Extended sequence of 12-hour forecasts
- Meteorological variables are reset to analysed values from ECMWF archives
- GEMS composition variables are carried over from preceding 12-hour forecasts
- Used as basis for first set of near-real-time forecasts

Control

- Data assimilation for meteorological variables, with 6h or 12h cycling
- No data assimilated for GEMS composition variables
- Similar to model simulation, with differences due to different meteorological analyses and possibly cycling period

| Assimilation

 Data assimilation for meteorological variables and (some) GEMS composition variables, with 6h or 12h cycling

Mean CO from 15 to 30 July 2003 from assimilation of MOPITT total-column data

Comparison with MOZAIC aircraft data over Osaka

Carlos Ordóñez

Unit: 10¹⁸ molec/cm²

Comparison of GEMS simulated and analysed aerosol optical depth with MODIS and MISR for July 2003

0.1

Radiance assimilation in GEMS (AIRS/IASI)

•By sampling the IR spectrum at very high resolution (R=1200) we can measure radiation that is only dependent on temperature and the atmospheric CO₂ concentration (small groups of pure lines)

•If we have accurate temperature information (from the ECMWF analysis driven by AMSUA data) we can separate out the CO₂ signal.

•Instruments with coarse spectral resolution (e.g. HIRS) sample radiation that is a mixture of absorbing species (e.g. CO_2 / N_2O / O_3 and H_2O) and cannot resolve the CO_2

Mean column CO₂ from assimilation of AIRS radiances

http://gems.ecmwf.int

Mean column CO₂ from assimilation of AIRS radiances: Validation with aircraft

CO₂ flux inversion from AIRS data assimilation

Cumulated surface flux increments derived from first CO_2 analyses for January-November 2003

Positive values imply flux into atmosphere.

Change in RMS fit to GLOBALVIEW-CO₂ (2006) data from use of incremented fluxes from latest analysis in LMDZ transport-model simulations

Peter Rayner, Frédéric Chevallier

Reanalysis

What is Re-analysis?

Analysis of past (historical) observational data using a <u>fixed</u>, tried-and-tested, operational data assimilation system.

What does it produce?

A comprehensive time series of global analyses (i.e. gridded fields of temperature, humidity, wind etc..) and a homogeneous organized / quality controlled data-set of observations.

What is it used for?

Meteorological research – into processes, composition, low-frequency variability, predictability, model development and general climate studies.

Operational forecast performance 1980-2006

Northern Hemisphere

500 hPa geopotential ANC reaching 60%

Tropics

850 hPa wind vector ABC reaching 70%

Southern Hemisphere

500 hPa geopotential ANC reaching 60%

Some practical considerations ...

The operational assimilation method and resolution is not affordable

•We have to use a degraded, possibly less-tested configuration

The operational system has known problems

- •We can implement recent fixes for some problems
- •We may have to accept and try to account for other problems

The operational system is tuned / based on current observing systems

- •We have to adapt the assimilation system to use older observing systems
- We have to handle changes in observation processing

If errors are found during the course of production

•We have to decide whether or not to stop / correct them / re-run

International REANALYSIS activity

I NCEP/ NCAR 1948**◊**

I NASA/ DAO 1980-1995

ECMWF, ERA-15 1979-1993

I ECMWF, **ERA-40** 1957-2002

JMA/ JRA-25 1979-2004

ECMWF, ERA-Interim

NASA GMAO

Polar Reanalysis

In-situ ("conventional") observations for ERA-40

•	Radiosonde and	pilot-balloon	soundings	1957 - 2002
---	----------------	---------------	-----------	-------------

- Surface data from land stations and ships 1957 2002
- Flight-level data from commercial aircraft 1973 2002
- Surface data from ocean buoys
 1979 2002

Radiosonde coverage in October 1961

Radiosonde coverage in May 1997

Satellite data for ERA-40

 NOAA VTPR radiances 	1973 - 1978
 NOAA TOVS/ATOVS radiances 	1979 - 2002
Winds from geostationary orbit	1979 - 2002
TOMS/SBIIV ozone retrievals	1979 - 2002

The ERA-40 Re-analysis used 41 satellite instruments carried by 15 different NOAA polar satellites

Some considerable reanalysis successes ...

Trend and variability in lower stratospheric

— MSU-4 data analyzed by Mears et al.

ERA-40 equivalent from Ben Santer

Linear trend: MSU-4 - 0.39°C/decade ERA-40 - 0.30°C/decade NCEP - 0.82°C/decade

Total ozone (Dobson units)

Blue: ERA-40 (TOMS and SBUV data assimilated 1979-1988 and 1991-2002)

Red: Groundbased measurements (NOAA/CMDL)

But...

some considerable reanalysis issues

Particular Issues related to the use of satellite data in re-analysis

- •Instrument drift/shift over the lifetime of a satellite
- Absolute and inter-satellite calibration between different satellites
- Intermittent (sudden) disruptions / contamination of data (by nature)
- Changes to channel / instrument payload
- •Events are often difficult to detect / fix in time during production...

Trends in Global 70hPa temperature (real and artificial)

Aspects of tropical humidity analysis

The next step...

ERA-interim

ERA-Interim 1989 \Diamond to continue...

ERA-40 1957-2002

Data-assimilation system

12 hour 4D-Var

Satellite radiances

Adaptive bias correction

Improved use of radiosondes

Bias correction and homogenization based on ERA-40

Much improved 500hPa height forecasts with 4DVAR

Anomaly correlation of 500hPa height, averaged for 12UTC forecasts from 1 January to 31 December 1989

---- ERA-interim
---- ERA---- Operations 1989

Variational bias correction of radiance data

- Radiance bias correction expressed in terms of a small number of unknown parameters:
 - A constant offset
 - Predictors depending on instrument scan position (scan bias)
 - Predictors depending on model state x (air-mass dependent bias)
- Add the bias correction parameters to the control vector in the variational analysis

 The analysis then estimates bias parameters jointly with model state variables (Derber and Wu 1998)

NOAA-9 MSU channel 3 bias corrections (cosmic storm)

200 hPa temperature departures from radiosonde observations

Need to homogenize radiosonde biases in time

(example: Haimberger, 2005 using ERA-40 feedback data)

SAIGON / TAN-SON-NHUT 00UTC 200hPa temperature (Background – Observation)

THE END