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Overview

BP1: Basic concepts: from remote sensing measurements to surface albedo estimates (1)

BP2: Basic concepts: from remote sensing measurements to surface albedo estimates (2)

TK1: Introduction to inverse modelling

TK2: Intro tangent and adjoint code construction

TK3: Demo: BRF inverse package and Carbon Cycle Data Assimilation System

BP3: Monitoring land surfaces: applications of inverse packages 
         of both surface BRF and albedo models



References and Definitions
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Definitions

Name Symbol Description
Parameters ~p Quantities not changed by model, i.e.

process parameters, boundary conditions
State variables ~v(t) Quantities altered by model from time step

to time step
Control variables ~x Quantities exposed to optimisation, a

combination of subsets of ~p and ~v(t = 0)
Observables ~o Measurable quantities
Observation operator H Transforms ~v to ~o
Model M Predicts ~o given ~p and ~v(t = 0), includes H
Data ~d Measured values of ~o



Statement of Problem

Given a model M, a set of measurements ~d of some observables ~o,

and prior information on some control variables ~x, produce an updated

description of ~x.

~x may include parts of ~p and ~v(t = 0)

~o = M(~x)



Information and PDFs

• We seek true value but all input information is approximate

• Treat model, measurements and priors as PDFs describing distribution

of true value

• Data and prior error easy

• Model error is difference between actual and perfect simulation for a

given ~x

• Arises from errors in equations and errors in those parameters not

included in ~x



Combining PDFs

• Operate in joint parameter and
data space

• Estimates are combination of
prior, measurement and model
(black triangle)

• Estimate is multiplication of
PDFs

• Only involves forward models
• Parameter estimate projection

of PDF onto X-axis



Summary statistics from PDF

• Combination of PDFs

(upper) and posterior

PDF for parameters

(lower)

• Can calculate all

summary statistics

from posterior PDF

• Maximum Likelihood

Estimate (MLE)

maximum of PDF



Tightening Model Constraint

• Note no viable solution
• If we cannot treat model as soft

constraint we must inflate data
uncertainty

• Model error hard to characterise



Gaussian Case

G(x) =
1√
2πσ

e
−(x−µ)2

2σ2
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Data:

Pd ∝ e
−(d−1)2

2·0.62
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Parameters:

Px ∝ e
−x2
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Model:

PM ∝ e
−(d−x)2

2·0.62



Prior

-2 -1  0  1  2 -2

-1

 0

 1

 2

 0

 0.5

 1



Data
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Prior plus Data
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Model
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Prior plus Data plus Model
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Prior plus Data plus Model
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PDFs and cost functions

• MLE most common quantity

• Maximise PDF numerically

• Most common P (x) ∝ e−
1
2J so maximising P ↔ minimising J

• J usually called the cost (or misfit or objective) function

• Exponentials convenient because multiplying exponentials ↔ adding

exponents



Perfect and imperfect models

Imperfect Model

• Include observables (~o) in control variables

J =
1

2

 
(~x− ~x0)

2

σ2
x

+
(~o− ~d)2

σ2
obs

+
(M(~x)− ~o)2

σ2
M

!

• ~x0 prior estimate for ~x, σ standard

deviations.

• Allows explicit model error

• Different from weak constraint 4D-Var in

which model state added to control variables

Perfect Model

• Observables not included in control vector

J =
1

2

 
(~x− ~x0)

2

σ2
x

+
(M(~x)− ~d)2

σ2
d

!

• If model imperfect, carried model error in

σd:

σ2
d=σ2

obs + σ2
M

• This is the form usually used in data

assimilation

• For linear M there is a closed solution

• Otherwise minimised by iterative algorithm,

usually using gradients

• Can calculate posterior σx by rearranging

PDF



Covariances

J =
1
2

(
(~x− ~x0)2

σ2
x

+
(M(~x)− ~d)2

σ2
d

)
Takes the more general form

J =
1
2

(
(~x− ~x0)TC(~x0)−1(~x− ~x0) + (M(~x)− ~d)TC(~d)−1(M(~x)− ~d)

)
• Off-diagonal terms represent correlation in uncertainty

• Persistent instrumental error

• Model error usually correlated

• Errors in initial conditions from previous forecast



Linear Gaussian case

J =
1
2

(
(~x− ~x0)TC(~x0)−1(~x− ~x0) + (M~x− ~d)TC(~d)−1(M~x− ~d)

)
~xopt = ~x0 + C(~x0)MT

(
MC(~x0)MT + C(~d)

)−1

(~d−M~x0)

C(~x)−1 = C(~x0)−1 + MTC(~d)−1M

=
d2J(xopt)

dx2

• C(~x) does not depend on values, only uncertainties and model
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How to solve it? 
1. Minimisation

Efficient minimisation algorithms use J(x) and 

the gradient of J(x) in an iterative procedure.

Typically the prior value is used as starting point of the iteration.

The gradient is helpful as it always points uphill.

The adjoint is used to provide the gradient efficiently.

Example: Newton algorithm for minimisation

Gradient:   g(x) = dJ/dx(x)

Hessian:    H(x) = dg/dx(x) = d2J/dx2(x)

At the minimum, x
min

:  g(x
min

) = 0, hence:

   g(x) = g(x) – g(x
min

) ~ H (x) (x-x
min

)

rearranging yields:

    (x
min

- x) ~ - H-1(x) g(x)

Smart gradient algorithms use an approximation of H(x)

Figure: Tarantola (1987)

Figure: Fischer (1996)
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Hessian quantifies the curvature of the cost function

Use Hessian at minimum to approximate C(x)-1 

Figure taken from Tarantola (1987) -->

How to solve it? 
2. Error bars
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Exercise

Do algebra for simple case

• Gaussian 

• 1 control variable

• 1 observation

• Model: identity


