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The Looming Water Crisis

> Quite aside from any climate issues, the

burgeoning population means increased demand.
(2.5B 1950; 6B 2000; 9.3B 2050?)

> 1.2 Billion people have no access to clean drinkable
water.
> 2.4 Billion people have no access to sanitation

> By 2050, it is projected that 7B people in 60
countries will face water scarcity.

> In the next 20 years, the per capita supply drops
by one third.

" World Water Development Report” United Nations ZOOﬁ



The presence of moisture affects the disposition
of incoming solar radiation:
Evaporation (drying) versus temperature increase.

Human body: sweats

Homes: Evaporative coolers (swamp coolers)
Planet Earth: Evaporation (if moisture available)

e.g., When sun comes out after showers,

the first thing that happens is that the
puddles dry up: before temperature
increases.




How should rainfall change as climate changes?

Usually only total amount is considered
* Butf most of the time it does not rain
* The frequency and duration (how often)
* The intensity (the rate when it does rain)
* The sequence
* The phase: snow or rain

The intensity and phase affect
how much runs off versus how
much soaks into the soils.




Precipitation

Precipitation Rate (CMAP)
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Changes in precipitation depend a
lot on the mean

¢ Precipitation has strong structure with
convergence zones

¢ A small shift creates a dipole: big increases
some places, big decreases in others

¢ This is the first order effect in El Nifo

mmmmmmm annual {Mar to Aprl) Meon 1979—1338 mm,/day
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Land precipitation is changing significantly over broad areas
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Pmatubo Effect on Hydrologlcal Cycle
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Estimated water year (1 Oct-30 Sep) land precipitation and river discharge
into global oceans based on hindcast from output from CLM3 driven by
observed forcings calibrated by obsenved discharge at 925 rivers.

Note: 1) effects of Pinatubo; 2) downward trend (contrast
to Labat et al (2004) and Gedney et al (2006) owing to

more data and improved missing data infilling)
Trenberth and Dai 2007; Dai et al. 2008 h
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Daily Precipitation at 2 stations
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Wiy JJ T rain? *
If a par'cel of air rises: it expand
lower air pressure and cgpls, an
may condense moisturlEREBIE: ddein
ultimately rainfall or§s el

Ingredients:

1. A storm of some sort To produce rising air (or
orographic uplift):
storm_tracks, etc

2. Mlcr'ophysws of cloud droplets that matter for
condensation and formation of droplets:
affected by pollution

3. Moisture f‘ .

| ' 4



Aerosols have multiple effects:
1. Direct - cooling
from sulfate aerosol:
milky white haze, reflects
2. Direct - absorbing
e.g. black carbon
3. Indirect - changes cloud

1. Form cloud condensation nuclei,
more dr‘opleTs - br‘igh‘l‘er‘ ClOUd,‘ Indo-Asian Haze transported thousands of
. : kilometers into the equatorial Indian Ocean.

Less rain, longer lasting cloud;
Absorption in cloud heats and
burns off cloud
4. Less radiation at surface means

less evaporation and less cloud

wN

Lifetime only a week or so: Very regional in effects
Profound effects at surface:
Ramanathan ef al 2001 Short-circuits hydrological cydﬁ
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Wirly does it rain? .

Where does the water come frofm:

Mean global P = E: (
But most of time it does or snow.

Average rain rate when it does rain is

(it rains over about 7% of globe at any time = 1/16)

Precipitable.water typically
But only perhaps 30% available =
How can it rain more than this?




Can not come from E,
Hence has to come fro
circulation into storm.

rt by storm-scale

On average, rain producing systems
(e.g., extnatropical cyclones:; thunderstorms)
reach out and grab moisture from distance about
3 to 5 times radius of precipitating area.







Extratropical Storms

Winds converging into the
low, pull cold air from the
poles toward the equator,
and warm moist air from
the equator to the poles.

Where they meet is where
we find fronts, bringing
widespread precipitation
and significant weather,
like thunderstorms.

Source: USA TODAY research by Chad Palmer, Graphic by Chuck Rose n
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We have estimated of the annual mean recycling

ratio of the percentage precipitation coming from
evaporation within a length scale of 1000 km (625 miles)
globally as about 20%;

Mississippi basin:
recycling of local moisture is 3 times more important

in summer vs winter for rain.

(adapted from Trenberth 1999). ﬁ

Note: models generally do recycling incorrectly

/}



Air holds more water vapor at higher
temperatures

A basic physical law tells us that the water
holding capacity of the atmosphere goes up at
about 7% per degree Celsius increase in
temperature. (474 oz °F)

Observations show that this is happening at
the surface and in lower atmosphere: 0.55°C
since 1970 over global oceans and 4% more

water vapor.

This means more moisture
available for storms and an

enhanced greenhouse effect.



How should precipitation P change
as the climate changes?

With increased GHGs: increased surface heating
evaporation Efl and Pl

With increased aerosols, EU and P
Net global effect is small and complex

Warming and T means water vapor 1l as observed

Because precipitation comes from storms gathering up
available moisture, rain and snow intensity 1l :
widely observed

But this must reduce lifetime and frequency of storms

Result:'wet: areas’ get wetter; dry. areas drier



How should precipitation P change
as the climate changes?

é. "The rich get'richer and the poor get poorer®”.: More
water vapor plus moisture transports from divergence
regions (subtropics) to convergence zones. Result:
wet areas get wetter, dry ‘areas drier (Neelin, Chou)

¢ "Upped ante” precip decreases on edges of
convergence zones as it takes more instability fo
trigger convection: more intense rains and upward
motion but broader downward motion. (Neelin, Chou)

¢ "More bang for the buck®. The moisture and energy
transport is a physical constraint, and with increased
moisture, the winds can be less to achieve the same
transport. Hence the divergent circulation weakens.

(Soden, Held, et al)
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Global warming
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Daily Precipitation (mm)

Percent of total seasonal precipitation for stations with 230mm+5mm
falling into 10mm daily intervals based on seasonal mean temperature.
Blue bar -3°C to 19°C, pink bar 19°C to 29°C, dark red bar 29°C to 35°C,
based on 51, 37 and 12 stations.

As temperatures and e_ increase, more precipitation falls in heavy
(over 40mm/day) to extreme (over 100mm/day) daily amounts.
Karl and Trenberth 2003
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Changes in U.S. precipitation 1900 to 2002

Changes in total, heavy, and
very heavy precipitation over
contiguous U.S.

Linear trends are up and
significant at 1%: 7,
14, 20% /century

Groisman et al 2004
Karl et al 2003
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Tncreases in extremes in U.S.
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Trend per % decade 1951-2003 contribution from very wel days
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Extensive Flooding in Europe, August 2002

Danube Mueglitz River Flooded A l(amp River
Budapest, near Dresden Dresden near Vienna
Hungary E. Germany E. Germany Austria

Kralupy, Czech Rep. Havel/Prague, Czech Rep.
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30,000 deaths
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Flood damages:
1. Local and national authorities work to prevent floods
(e.g., Corp of Engineers, Bureau of Reclamation, Councils)

Build ditches, culverts, drains, levees
Can backfirel

2. Deforestation in many countries:
Leads to faster runoff, exacerbates flooding

3. Increased vulnerability to flooding through
settling in flood plains and coastal regions
Increases losses.

Flooding statistics NOT useful for
determining weather part of flooding

/}






ERA T vs GPCP: 1979-2002
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Cold nights

Decadal trend (days) 1951-2003
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for 1951 to
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From Alexander
et al. (2006)
and IPCC



Drought; is| increasing mosi: places

Mainly decrease in min\
over land in ftropics and

subtropics, but enhanced

by increased atmospheric

demand with warming

:)evzr'rrTM
(PDHST) for 1900
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Tnz rimz szrizs
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Increases in rainfalll and cloud counter warming

IPCC 2007



Mississippi River Basin
Water Budget

M=756 M=565 M=191
|b|=85.5 |b|=20.7 |b|=67.6
R
M= 0
Land dwi/dt FBehte

Energy Budget

M=131 M=63 M=28 M=40
Ib|=5.7 Ib|=6.3

Ibj=1.8 |b|=2.5

TRENDS: 1948 to 2004

M is the long-term annual
(water-year) mean in

mm for water components;
W m-2 for energy components

b: annual linear trend 1948-2004
mm/century for water
W m-2/century for energy

(proportional to arrow shaft
width).

The downward arrow means that
the flux increases the trend of
dWw/dtor 6.

So it has become cloudier
and wetter, with less solar
radiation, but with
increased ET and
diminished SH (change in
Bowen ratio).

Qian et al 2007 N



SNOW PACK: In Colorado, as in many mountain areas,
global warming contributes to:

- more precipitation falls as rain rather than snow,
especially in the fall and spring.

snow melt occurs faster and sooner in the spring
snow pack is therefore less as summer arrives

soil moisture is less, and s less

global warming means more drying and heat stress

the risk of

along with heat waves
and wildfires




“Rich get richer, poor get poorer"

Projections: Combined effects of increased

precipitation intensity and more dry days
contribute to lower soil moisture

a) Precipitation
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Precipitation intensity Precipitation intensity
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Are hurricanes changing with
global warming?
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North Atlantic Hurricanes and Named Storms (1851-2006)
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North Atlantic Hurricanes and Named Storms (1944-2006)
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Climate changes in both rainfall and temperature should
be considered together.

"It's not the heat it's the humidity!”
Comfort depends upon both.

Water serves as the “air conditioner”
of the planet.

There appear to be prospects for increases in extremes:
More floods and droughts: both have adverse impacts.

Water management: will be a key: issue:
How to save excesses in floods for fimes of drought?
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