Applications of Data Assimilation in Earth System Science

Alan O'Neill National Centre for Earth Observation & University of Reading

Weather Forecasting

Impact on NWP at the Met Office

Anomaly correlation of 500hPa height forecasts

Atmospheric Processes: clouds and microphysics

Variational ice cloud retrievals

Robin Hogan and Julien Delanoe

Air Pollution Forecasting

Nadir-Viewing

- Near-surface layer seen between clouds but

– Little or no vertical resolution

Understanding and predicting the spread of pollutants:NO₂ from SCIAMACHY

Estimating Surface Fluxes of Greenhouse Gases

Atmospheric CO₂ and land

~~ver

- Greater CO₂ uptake by forests compared to crops & grass plains?
- Seasonal variability?
- Identification of sub-continental CO₂ sources/sinks ?

Michael Barkley, ULeic. (FSIWFM-DOAS v1.2)

GHG Observing Points

Ground Stations (current)

- ·274 ground stations in the world.
- The observing data from these stations is distributed from WDCGG of WMO
- •The number of stations is limited, and they exists unevenly in the world.

WDCGG: World Data Center for Greenhouse Gases WMO :World Meteorological Organization

Carbon from Space

From Space (GOSAT)

Over 100,000 points per 3days

 Global and frequent observation with an single instrument

Satellite observations of column CO2 by GOSAT and OCO will revolutionise our knowledge of the C cycle. Effective use of these data with models is a key challenge of the next 5 years and beyond.

Atmospheric Re-Analysis

Trend and variability in two-metre temperature

Coupled Atmosphere-Ocean Forecasting

Real Time Ocean Observations

ARGO floats

XBT (eXpendable BathiThermograph)

Argo Network, as of March 2006

2436	Active	Floats

 e ARGENTINA (6)
 e JUSTRALZA (92)

 e COSTA RICA(1)
 JAPAN (353)

 e JUSTRALZA (92)

 e EUROPEAN UN. (25)
 e KOREA, REP. OF (83)

 e RAAZLI (3)

 FRANCE (163)

 e MAURTIUS (2)

 e CANADA (76)

 e GERMANY (123)

 MEXIZO (1)

 e CHILE (4)

 i NIDIA (74)

 NETHERLANDS (7)

 c HANA (9)

 i RELAND (1)

 NEW ZEALANDA (6)

NORWAY (9)
 RUSSIAN FED. (3)
 SPAIN (6)
 UNITED KINGDOM (96)
 UNITED STATES (1293)

El Niño 1997/98 Seasonal Predictions

The Geoid. Altimetry and

Assimilation assumes <u>full DT</u> IMILATION DT= MDT + SSH_anomaly

where MDT = Time mean DT

Like to use MDT = Mean_SSH – Geoid

In practice MDT model product

Error characteristics of SSH_anomaly and MDT Completely different

DT= MDT + SSH_anomaly MDT error represents constant observation bias

Uses of Ocean Reanalysis

Atlantic MOC at 26N

Analysed sea level 26-31 Dec 2004 Global ¼ NEMO 18 yr Synthesis with assimilation Eg. Better Gulf Stream separation here aids Altimeter and GOCE assimilation for NCEO)

Thermohaline MOC transports in ECMWF reanalysis compared to Bryden section based annual means (Black line is assimilation) Balmaseda et al 2007

Seasonal-Decadal Prediction

- Intitialize Ocean, Ice + Land
- Ensemble prediction ~10yrs

Ensemble forecasts of global mean temperature

Land Surface Assimilation

EO interactions with a Dynamic Vegetation Model

Regional Scale: Walnut Gulch (Monsoon 90)

Houser et al., 1998

Land Initialization: Motivation

• Knowledge of soil moisture has a greater impact on the predictability of summertime precipitation over land at mid-latitudes than Sea Surface Temperature (SST).

Arctic Sea Ice Extent: Summer 2007

Quantifying polar change and its global consequences

2007 Arctic sea ice summer minimum (compared with climatological average) Impact on global ocean circulation?

END