

Mean Temperature Change 1965 to 2002 over the globe

Processed by the U.S. NCDC Global Climate at the Glance Mapping System

Canada Wide Observations and Modelling

Natural Resources Canada

Ressources naturelles Canada

Multi-Sensor Concepts for Greenhouse Gas Accounting of Northern Eurasia

Location of STBERLA-I Classification within SIBERLA-II

eit 1558

SAR images

Magnitude: backscattering intensity many scatterers \rightarrow speckle

Phase: propagation time + scatter term only known modulo $2\pi \rightarrow$ white noise

Strozzi, T., InSAR Sommerschule 2002

SAR Interferometry

... combines two or more complex-valued SAR images to derive more information about the imaged objects (compared to using a single image) by exploiting phase differences.

phase of complex pixel in ...

⇒ Images must differ in at least one aspect (= "baseline")

SAR 1 ... SAR image #1: $\phi_1 = -\frac{4 \pi}{\lambda} R + \phi_{scatt,1}$ SAR 2 В ... SAR image #2: $\phi_2 = -\frac{4\pi}{\lambda} (R + \Delta R) + \phi_{scatt,2}$ R ΔR ... interferogram: $\phi = \phi_1 - \phi_2 = \frac{4\pi}{\lambda} \Delta R$ $R' = R + \Delta R$ (if $\phi_{scatt,1} = \phi_{scatt,2}$!) phase-to-height sensitivity: $\frac{\partial \phi}{\partial z} = \frac{4\pi}{\lambda} \frac{B_{\perp}}{R \sin \theta}$ Z

Bamler, R., InSAR Sommerschule 2002

ERS backscatter

ERS "tandem" coherence

InSAR images

ERS InSAR phase

ERS "tandem" coherence

Strozzi, T., InSAR Sommerschule 2002

2 Across-Track SAR Interferometry

Interferometric Phase

Bachu, China

approx. 100 km \times 80 km

ERS-1/2 data © ESA

Bamler, R., InSAR Sommerschule 2002

2 Across-Track SAR Interferometry

InSAR DEM (ERS-1/2)

Bachu, China

approx. 100 km imes 80 km

DLR

ERS-1/2 data © ESA

Bamler, R., InSAR Sommerschule 2002

Roth, A., InSAR Sommerschule 2002

Coherence contributions

The coherence depends on sensor parameters, parameters related to the imaging geometry and target parameters:

 $|\gamma| = \gamma_{thermal} \cdot \gamma_{spatial} \cdot \gamma_{temporal}$

 γ_{thermal} : influence of the signal-to-noise ratio

 $\gamma_{spatial}$: spatial decorrelation related to the imaging geometry (interferometric baseline, local incidence angle)

 $\gamma_{temporal}$: temporal decorrelation

SIBERIA Methodological Objectives

Analysis of the available radar data with the help of ground data

- to define the forest information provided by the radar data,
- to develop efficient and effective methods to extract that information.

The methods needed to be:

automaticbecause of the large amount of data to be handled
(550 ERS and 890 JERS scenes)adaptivebecause of changes in image properties between
scenes, caused by imaging geometry and
environmental variationsconsistentso that the assignment of information would not be
scene dependent
so that some degree of confidence could be assigned
to the results

Classification Source Data

- Small dynamic range
- Variable response to water
- Variable response to open areas
- Can be used as indicator of environmental effects effecting the coherence

Eriksson)

- Medium dynamic rangeStable response to water
- •Possible to identify
- agricultural fields
- •Higher frame to frame variations

ERS Tandem Coherence

- •Higher contrast between forest/non forest
- •Higher sensitivity to forest volume
- •Confusion between water and dense forest
- •Frame to frame variations

Model definition for coherence

(Wagner, Vietmeier et al.)

$$\gamma(v) = \gamma_{\infty} + (\gamma_0 - \gamma_{\infty}) \cdot e^{\frac{v}{V_{\gamma}}}$$

$$\gamma_{\infty} \approx \gamma_{75}$$

$$\gamma_0 = a_{\gamma} + b_{\gamma} \cdot \gamma_{75}$$

$$\gamma(v) = \gamma_{75} + (a_{\gamma} + (b_{\gamma} - 1)\gamma_{75}) \cdot e^{\frac{v}{V_{\gamma}}}$$

$$\gamma(v) = \gamma_{75} + (0.330 + 0.581 \cdot \gamma_{75}) \cdot e^{\frac{v}{122.1}}$$

v = growing stock volume $\gamma_0 =$ coherence at v = 0 m³/ha (non-forest) $\gamma_{\infty} =$ coherence for asymptotic values of v(corresponding to dense forest)

 γ_{75} = value where the coherence distribution reach 75% of the maximum value (see fig.)

 V_{γ} = characteristic v value where the exponential function has decreased by e⁻¹

Correspondence Siberia Land Category and Radar retrieved Land Category

Independent Russian Field Data

	Ground validation					
Earth Obs.	<20 m3/ha	20-50	50-80	>80 m3/ha	Total	User
Results		m3/na	m3/na			accuracy
<20 m3/ha	908	36	5	9	977	93 %
20-50 m3/ha	76	576	39	15	707	81 %
50-80 m3/ha	12	33	881	58	984	90 %
>80 m3/ha	0	9	120	2182	2311	94 %
Total	1016	655	1045	2264	5232	95 %
Producer accuracy	89 %	88 %	84 %	96 %	95 %	91%

Pooled confusion matrix for the 7 Russian test areas. $K_w = 0.94$.

Vegetation Data Resources

Above Ground Biomass

Nothing as yet global and accessible as Above Ground Biomass

Regional - SIBERIA (1mio km² at 50m, 1998) based on SAR Interferometry

Future - SIBERIA-II (from 2002-5) Other SAR methods ESSP VCL?

http://pipeline.swan.ac.uk/siberia/

Products

Radar Image Mosaic

111 Radar Image Maps

Forest Cover Mosaic

96 Forest Cover Maps

SIBERIA - Inventory Map Comparison, Irkutsk Forest Servin

Testing with Earth Observation

Multi-Sensor Concepts for Greenhouse Gas Accounting of Northern Eurasia

EO - Model Interfaces

Two main classes of potential interface:

- 1. Land cover and structure (boundary conditions):
 - land cover
 - fire extent
 - freeze-thaw, snow cover
 - species
- 2. Vegetation status (functioning):
 - ♦ fAPAR (foliar chemistry)
 - phenology
 - LAI
 - biomass

The Lund-Potsdam-Jena Dynamic Global Vegetation Model (DGVM)

Analysis of the Present

Series

Postdiction

Prognostic Biosphere Process Models GENERALIZED

High Quality New Data Historical

Prediction

Prognostic Biosphere Process Models GENERALIZED

PAST **1900**

PRESENT (1990)2003+2004

EO Data

FUTURE 2100

SIBERIA-II Greenhouse Gas Parameters

GROUND TRUTH

 70 test areas distributed over 7 bio-climatic zones

- Test areas range from 40,000 to 150,000 ha and include 700 to 5-7,000 primary land cover polygons
- GIS components include maps at scales 1:50,000 and 1:100,000 and corresponding attributive databases

Dr. Leonid Vashchouk, Irktustk Regional Forest Service

Database:Forests

- Forested areas
- 1. Code of dominant species
- 2. Share of growing stock of dominant species
- 3,5,7,9. Code of admixture species (maximum 4)
- 4,6,8,10. Share of growing stock of admixture species
- 11. [Average] age [age class] of dominant species
- 12. Type of age structure
- 12-15. Average age of admixture species
- 16-17. Average height/diameter of dominant species
- 18-25. Average height/diameter of admixture species
- 26. Site index [bonitet class] average height in 100 year
- 27. Relative stocking
- 28. Average growing stock
- 28-32. Phytomass of dominant species by 4 major fractions
- 33-40. Phytomass of admixture species by 4 fractions
- 41-44. Phytomass of undergrowth (incl. green forest floor)
- 45. Coarse woody debris (1-5 decay stages)
- 46. Dead roots
 - N3, Mg C ha-1
- 47. Net growth
- 48. Gross growth
- 49. Net Primary Production (by 4 fractions)
- 50. Seasonal course of Leaf Area Index
- 51. On-ground litter
- 52. Soil type N3. dimensionless
- 53. Texture class
- 55. Depth of active layer
- 56-59. N:C ratio in phytomass by fractions (green parts, stems,
- branches, roots) ratio in dead organic (CWD, on-ground litter) dimensionless

N3, dimensionless N2, dimensionless N3, dimensionless N2, dimensionles N3, year N1, dimensionless N3, year N2, m/ N2, cm N2, m/ N2, cm N2.1, m N0.2, dimensionless N3, m3 ha-1 N0.4, Mg C m-3 N0.4, Mg C m-3 N0.4, Mg C m-3 N3, Mg C ha-1

N2.2, m3 ha-1 N2.2, m3 ha-1 N4, g C m-1 N2.2, m2 m-2 N2.1, Mg C ha-1

N1, dimensionless N3, cm

N0.3, dimensionless 60-61. N:C N0.3,

🔍 Arc	View GIS 3.2a															<u> </u>
<u>F</u> ile <u></u>	<u>E</u> dit <u>T</u> able Fjeld <u>W</u>	(indow <u>H</u> elp)													
			int f	M < 1			M N?									
		elected			<u> </u>		<u> </u>									_
	0 01 0072 30			-1												_
🍭 co	mpl3.dbf		<u>- 🗆 ×</u>	🛛 🍭 View1											<u>- 0 2</u>	×П
5	S 51	52	53	Soils	,	A 570	1 VARY	L'YOL	Real	N 65 T	2/2/2	a cher	500	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	66 69	123			 acid alluvial	s T KY	5 Alex	s) las		2.the	恐い ろ/	\mathcal{C}	L'ASE!	2~214(5)		
	71 72				acid brown f	fo (C, 2,	N ZRA		31/1	8 K C	Sine.	۲۶,	1 22 (1	(Frank Strand	S R	
	77 80	123			acid sod-tai	94	JAP P	Ashar	A Z	<u>ዓ</u> ሌ) ሀ	12. 1. 14	\sim	122	12 6 6 35 1		
	25 27	49			j aikalised on Laretie solls	"LP2	The Lang	No Car	\mathcal{A}	Krai	-IST N	\smile	- BA	5 2 3 W V 1	(Abais)	
	73 76	69	53		arctic soils a		1 Store		CET	0.56		b N 🗟	2 Sta	Yes & Alton 1	12-210-77-8	
	67 69	53			brown taiga	s 🔽	d and	<u>a</u> /~~/	とうて	N. 33	CAN	K.V.	31112	S S S S S S M S	30 .38	
	81 80	53			chernozems		South C			~1122	CAN .	1516	123WG	కోజ్న శాగ	525	
	285 280	123	27		dark grev for dark grev for	re 💦			63	XXX	ALCONT	The C	500		The later	
	282 283	123			dark kastan	02	\$ 3 V	21 8	-371	보신	J	I RV	ING/A	it's and	<u> </u>	
	26 27	53	123		dark tundra	PI Tot	~~~~~ \	Nor 2	5 5	ಿಸ	The second second	25 5 (6775	T SATA	2 15/3-2 1	
	28 30	27			deep-gleyic	의 국규	~~ h	M.C.S.	ND VS	UE V		12	NY LA		b the fi	
	24 23	27			deeply-gleye difforontiato	a my	-512	5 2004	Str.	2		52	YS T	SSI CAL	the Constant	
	157 158	27	123		differentiate		$(\leq) $	SN Se	State 1	C-W			13892	RUCCS	2 CAN V	
	165 167	27	123		dry-peat poo	db 📃	march ()	የአማካ	$\tilde{\mathcal{A}}$	3 - La	F&C YS/	78	n hi	19 Carl Esta	Varel	
	100 100	140	123		dry-peat poo	1z 126	the T	ZVS	Sold Star		26-21	CV B	教ン的	in the second	محصر خمام الم	
	161 162	140	······ 🔻		glaciers and glev and gle	1 Nr	1 7a	D North		12g	CITO219	27/	GDAN			
•] 🛏	alev and gle	J_ <u>X</u> _	mr 2	- V	15g	\sim			Ge So	(53(4K)LM	478 S	
👰 d	ataansi2.dbf										- [ı×I	🍭 Attrib	utes of Soils_a		X
Soil	' Soi <u>l</u> en	51	oi <u>l</u> (ao	Havizon	Thick_min	Thick_max	Humus_min	Humus_max	Cn_min	Cn_max	Chc <u>f</u> min	(In	Shape	Area	Perimeter	Sa
287	arctic desert soils	BGi	Cr	(Co)	10	16	0.5	9.6	10	15	0.4		Polygon	322893597.06940	69777.46984	•
287	arctic desert soils	RGi											Polygon	449093565.14297	81584.00538	
292	arctic soils	RGi	A1	1	1	2	0.5	9.6	10	15	0.4		Polygon	95661631.22297	44268.13653	1
292	arctic soils	RGi	C[,	AC]	2	5	0.5	7.1	10	15	0.4		Polygon	2442891751.09498	410569.25666	[
292	arctic soils	RGi	!C	са									Polygon	5713958789.17313	434126.71214	ſ
288	Carbonate arctic soils	RGi	A1	1	1	5	1.0	4.0	10	15	0.4		Polygon	248601566.62897	123268.19337	
288	} carbonate arctic soils	RGi	A1	1Cca	2	5	0.2	1.0	10	15	0.4		Polygon	273681711.36323	133471.04487	į
288	carbonate arctic soils	BGi		са									Polygon	320611780.77573	148544.81143	

292	arctic soils	Hui	AI		Z	0.5	9.6	10	15	U.4 į	Folygon	30661631.22237	44268.13693	
292	arctic soils	RGi	C[AC]	2	5	0.5	7.1	10	15	0.4	Polygon	2442891751.09498	410569.25666	
292	arctic soils	RGi	!Cca								Polygon	5713958789.17313	434126.71214	
288	carbonate arctic soils	RGi	A1	1	5	1.0	4.0	10	15	0.4	Polygon	248601566.62897	123268.19337	
288	carbonate arctic soils	RGi	A1Cca	2	5	0.2	1.0	10	15	0.4	Polygon	273681711.36323	133471.04487	
288	carbonate arctic soils	RGi	!Cca								Polygon	320611780.77573	148544.81143	
291	hydromorphic non-gley arctic se	RGi	A1(d)	1	5	0.5	3.0	10	15	0.4	Polygon	53942908.20029	41187.17326	
291	hydromorphic non-gley arctic se	RGi	Bd	5	10	0.1	0.5	10	15	0.4	Polygon	11194192.48830	14327.90444	
291	hydromorphic non-gley arctic se	RGi	!_C								Polygon	1038702634.12952	198247.58478	
250	arctic gleyzems	Gli	01(02)	1	10	70.0	90.0	10	15	0.3	Polygon	6141518.92334	10824.17827	
250	arctic gleyzems	Gli	G	15	20	1.7	2.4	10	15	0.3	Polygon	1301349243.37264	286137.69817	
250	arctic gleyzems	Gli	!G								Polygon	16330719.70070	18729.29067	
280	weakly-gleyed humus arcto-tu	Gli	A1	1	3	2.4	10.0	10	15	0.4	Polygon	20471310.67290	18300.35636	
280	weakly-gleyed humus arcto-tu	Gli	Bg	20	30	1.0	3.5	10	15	0.1	Polygon	181828313.57317	86566.86589	
280	weakly-gleyed humus arcto-tu	Gli	!_C								Polygon	451409794.32465	188527.81129	
283	raw-humus arcto-tundra and tu	Gli	03	1	5	70.0	90.0	10	15	0.7	Polygon	2670269290.60930	485200.26351	
283	raw-humus arcto-tundra and tu	Gli	[AOA1]	60	80	0.0	2.7	10	15	0.3	Polygon	3650951.98011	9942.27291	
283	raw-humus arcto-tundra and tu	Gli	!_G								Polygon	10268854.05243	12720.85856	
27	peat and peaty-gley tundra soil	Gli	01(02)	5	40	70.0	90.0	10	15	0.5	Polygon	1953296.86828	5374.28967	
27	peat and peaty-gley tundra soil	Gli	Gd	20	30	0.5	6.0	10	15	0.2	 Polvaon 	1228969 05591	5178 34767	
										· · · ·	নানি			

Temporal & spatial coverage

17.8

Spatial coverage			Temporal coverage																		
Sensor	Res.	Extent	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	00	01	02	03
ATSR-2	1km	Full												19.00	1. 1 L	À	Â.				
SPOT VEGETATION	1km	Full					he.														
AATSR	1km	Full						K.													
MODIS	500m	Full		1				1	1												
TM	30m	test sites	- C	13.																	
ASAR global mode	500m	Full					1			-											
ASAR image mode	50m	test sites	1	The second	and the	5									15.7	3					
GLOBSCAR GBA2000	1km	Full	1	the second									and the second	and the second							

⁻ernerkundung

Results: Image segmentation

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

Segmentation of SPOT VGT 18th, 19th, 23rd Aug 2000 ATSR-2 hotspots (summers '96, '97)

SIBERIA-I, 1km pixels (1997/98) 'white' = low biomass

Level 1 comparison

Land cover classification method

Supervised classification - C5.0 (decision tree) Training areas Expert knowledge • Russian colleagues Landsat TM analysis • Blue rectangles - Some classes from **GLC2000** 1000 training polygons

Heterogeneity

- Mismatch in spatial scale

Ferner

- Scaling issues

Advantages of MERIS

MODIS, 500m R:Red, G:Green, B:Blue

MERIS, 300m R:Red, G:Green, B:Blue

MERIS and land cover

 MERIS Advantages: European sensor • Future data availability More appropriate spatial resolution for land cover

-ernerl

Geoinformatik und

Friedrich-Schiller-Universität

Schmullius

à

Prof.

Histogram of forestry polygon sizes in S. Lake Baikal region

State of the Art

• E.g. GLC 2000

Continental or global in coverage

Hard Classification

Kilometre pixel size

Temporally static

University of Wales Swansea

Siberia-II Level 2 results

- 500m pixel size
- 3 LC maps (2001, 2002, 2003)
- 2004 to be derived
- 16 Classes identified
- Results similar to previous efforts (GLC, UMD, IGBP)

SibII Level 3 results

- Same as the level 2 LCmap, except:
 - New forest classes added Aspen Birch Ceder Fir Larch Pine Spruce

Mixed Evergreen Needleleaf Mixed Deciduous Broadleaf Mixed Forest

Accuracy (Siberia-II Level 2)

ernerki	vs Train	ing Data		vs New te	st sites		vs GLC20	00
	Prod.	Users	and the second se	Prod.	User	Sec	Prod.	User
Water	100.0	99.61		83.22	92.77		50.85	77.37
Soil/Rock	84.34	99.91	1997	45.71	67.95		37.60	53.51
E Urban	95.38	99.2		-	-		29.33	24.12
Cropland	100.0	70.28	Ser.		_		20.86	15.91
Crop/Forest	94.92	90.18	1				18.12	12.92
Eight Conif.	100.0	91.81		51.66	78.21		58.85	72.56
Dark Conif.	100.0	91.87		85.01	74.71	aller .		-
Soft Decid.	100.0	89.03		84.93	73.64		62.22	52.80
2 Light Needleleaf	100.0	67.37			-		61.56	72.20
Light Broadleaf	100.0	89.39		_	_		-	_
Grassland	90.67	99.94	. A	-		1.1	31.40	37.70
E Wetland	99.72	99.72	-	-	-	a der	21.42	48.63
E Tundra Moss	100.0	77.03		95.58	48.76	- Carlo	84.63	62.68
Tundra Heath	76.61	99.96					21.95	20.04
Steppe	97.27	87.08		99.18	63.77	1.5	64.92	35.70
	VERS					a bearing	<i>y</i>	

Overall 92.18 Kappa 0.91

Overall 73.87 Kappa 0.64

Overall 58.68 Kappa 0.48

Earth Observation and the Kyoto Protocoll

Five areas were identified where remote sensing technology may be applied, partly or fully, toward facilitating the treaty:

- Provision of systematic observations of relevant land cover (Art. 5, Art. 10);
- Support to the establishment of a 1990 carbon stock baseline (Art. 3);
- Detection and spatial quantification of change in land cover (Art. 3, Art. 12); (→ Senken -> ARD)
- Quantification of above-ground vegetation biomass stocks and associated changes therein (Art. 3 Art 12);
- Mapping and monitoring of sources of **anthropogenic CH4** (Art. 3, Art. 5, Art. 10);

ARD Classification

Object Based Post Classification

1990

1. Step: multi-scale segmentation

ARD Classification

ANN Change Classification (multispectral - pixel based) Differentiation of human induced Deforestation and fire disturbances is problematic

> deforestation fire scars (deforestation) forest no changes reforestation urban / industrial areas water

ARD Classification

Prof. Dr. C. Schmullius • Friedrich-Schiller-Universität Jena • Geoinformatik und Fernerkundung

ANN Change Classification (multispectral - pixel based)

Next step: use of reliable evaluation areas for accuracy assessment

Analysis of in-situ data

- Leaves appear after the beginning of the snowmelt. Variable time lag between both events.
- Close dates of leaf appearance for deciduous species.
- Mean leaf appearance interannual variability at one given place: 30 days.
- Variation of budburst dates from north to south: approximately one month Le Toan / 23 April 04

Analysis of spectral indices

Man of hudburet datas ovar Sibaria in 2001 ras () 1°

Map of phenological dates over Siberia:

BIO

ASAR WS availability

- Summer data from 2003 cover western part of Siberia II area
- Time period important for permanently by water covered surfaces: Summer (July-mid September)
 - Most of the region will be covered

Water bodies – accuracy assessment

Current extent of water bodies mask

- No water bodies in the corresponding IIASA GIS layer for this area - pink areas: MODIS water class (all other area classified as tundra)

SIBERIA II "The last year...", UWS: Gregynog, 22-24 April 2004

SIBERIA II "The last year...", UWS: Gregynog, 20-22 April 2004

New Dynamic Algorithm

(Mognard & Josberger 2002)

- Dense media Radiative transfer theory
- Mie scattering
- Takes in to account snow grain size metamorphism in time and space.
- Requires surface air temperature information.

Mean monthly values averaged between 1988-1998

2

Summary of annual carbon balance of SIBERIA-II region, 1988-1992

NBP = +25 gC/m²/a = 82 MtC/a

SIBERIA-II region: 328 Mio ha

SIBERIA-II Greenhouse Gas Parameters

SIBERIA-II Operational EO-Products for Greenhouse Gas Accounting

Greenhouse Gas Parameter = EO Product	Parameter Synergies	Main Sensor	Sensor Synergies (incl. Up- & Downsscaling) Improvement!	Source Years for SIBERIA-II	Pixel Size
ARD (only testsites)	Disturbances Landcover	Landsat TM	Multitemp. AVHRR ASAR ; JERS-1	90 <u>vs</u> . 2000	25mrto 2kmr
<u>Biomass</u>	None	None	SIBERIA(-1) Map ASAR AP and repeat- pass coherence; NDVI (97-03)	1997/8 (Envisat03 / 04)	50m to 8km
<u>Disturbances</u>	ARD Landcover SnowCover	SPOT VGT	SIBERIA(-1) Map Multitemp, ASAR; AVHRR; ATSR-2, MODIS, MERIS	1990-2002, 2003 on a monthly basis	300m to 1km
FAPAR + LAI		MODIS	AVHRR, MERIS, VGT	2002, 2003	1 km to 10 km
Phenology	Landcover Snow Cover	MODIS	ASAR WS, AVHRR, MERIS?, SSM/I, VGT	98-03	1 km to 10 km
Freeze/ Thaw	Snow Extent Phenology, (Permafrost)	Quickscatt	(ASAR WS), MODIS, MERIS	1999-ongoing	(75m to) 10km
Land cover	Disturbances Waterbodies Biomass Phenologoy	MODIS	AATSR ASAR WS MERIS	2001-2004	300m to 1km
Snow Depth & Date of Snowmelt	Landcover Phenology	SSM/I	MODIS VGT	1988-02	1 km to 25 km
Soil-moisture (not operational)		Scatterometer	ASAR WS	92-2000	25km
Wetlands Waterbodies	Landcover (Permafrost)	ASAR WS	SSM/I	2004 (2003/04)	75

EXPECTED KEY IMPROVEMENTS FOR GREENHOUSE GAS ACCOUNTING FROM EO

I Fernerkundung	Compiled by W. Lucht and the SIBERIA-II EO-Model Interface Splinter Group, ESRIN, Nov. 7, 2003	LPJ-Model (Lund Potsdam Jena Dynamic Veg.Model)	SDGV Model (Sheffield Dynamic Global Vegetation Model)	IIASA GIS Account (Int. Inst. of Applied System Analysis Geoinformation Syst.)
rmatik unc	BASELINE "pre-SIBERIA-II"	stand-alone runs 1900-2100	stand-alone runs 1900-2100	previous results for 1990 (1988-92 av.)
versität Jena • Geoinfo	EO-MODEL COMPARISONS → PROCESS IMPROVEMENT	Permafrost (from Freeze/Thaw) Snow PFT parameters	Permafrost (from Freeze/Thaw) PFT (Topography)	 New semiempirical models (eg for NPP) Process blocks include landscape properties
us • Friedrich-Schiller-Uni	EO-ASSIMILATION INTO MODELS.I → IMPROVEMENT OF SPATIAL CONSTRAINT "Land Cover (LC) vs. PFT*) *plant functional type	Force LC (for improved biomass patterns and C- balance)	Force LC (for improved biomass patterns and C- balance)	LC Disturbance pattern (incl. EO-fire) Wetland pattern
Prof. Dr. C. Schmulli	EO-ASSIMILIATION INTO MODELS II → IMPROVING SPATIAL- TEMPORAL CONSTRAINTS	fPAR assimilation (recent climate data crucial!)	fPAR assimilation (recent climate data crucial!)	Direct and indirect use of fPAR and LAI

SIBERIA-II Objective To develop multi-sensor concepts for Greenhouse Gas Accounting of Northern Eurasia

Project Region 3.5 Mio sqkm N-S transect to prepare climate change scenarios for the pan-boreal

Major Effects –

observed already now or of concern for the near future

Changes in permafrost/ice

- hydrology / ocean salinity
- vegetation / GHG balance (soils)
- infrastructure

Changes in vegetation & snow cover patterns

- impact on albedo climate feedback
- impact on carbon/GHG/H₂0 balance

Changes in C, N, H₂0 ... (GHG) stores/fluxes

- impact on regional/global climate
- stress effects on ecosystems
- human use impacts (eg water use, biomass/wood potential)

Changes in fire regime

- management
- vegetation composition
- GHG & aerosol emissions

Changes in socioeconomics

- impact of infrastruct. changes (pipelines, transp.) on ecosyste
- impact of land use change on hydrology, GHG balance

Changes in sea ice

- impact on coastal zone (transport, livelihoods)
- impact on reg./global circulation (climate, water cycle, veg)

Changes in atmospheric chemical composition

- arctic haze
- ozone (tropospheric and stratospheric, UV effect)

Prof. Dr. C. Schmullius • Friedrich-Schiller-Universität Jena • Geoinformatik und Fernerkundung