Data Assimilation
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3D variational data assimilation - ozone at 10hPa
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Estimating Error Statistics

Error variances reflect our uncertainty in the
observations or background.

Often assume they are stationary in time and
uniform over a region of space.

Can estimate by observational method or as
forecast differences (NMC method).

More advanced, flow dependent errors
estimated by Kalman filter.



Estimating Covariance Matrix
for Observations, O

e O usually quite simple:
— diagonal or

— for nadir-sounding satellites, non-zero
values between points in vertical only

« Calibration against independent
measurements



Estimating the Error Covariance
Matrix B

 Model B with simple functions based on
comparisons of forecasts with
observations:

B, Ls s, exp(- dij/L) horiz. fn x vert. fn

e Error growth in short-range forecasts
“verifying” at the same time (NMC
method)

B »<[X, (48h) - X, (24h)][x, (48h) - x. (24h)]" >

1

state vector at time t from forecast 48h or !4 h earlier



3d-Variational Data
Assimilation



Variational Data Assimilation

>

J(X)




Variational Data Assimilation

J(X) =
(X- X,) B (x- x,)+

(y- H(X)) R™(y 5 H(x))
/

nonlinear operator
assimilate y directly
global analysis



Remarks on 3d-VAR

Can add constraints to the cost function,
e.g. to help maintain “balance’

Can work with non-linear observation
operator H.

Can assimilate radiances directly
(simpler observational errors).

Can perform global analysis instead of
Ol approach of radius of influence.



Maximum Probabillity or

e For Gaussian

Likelihood

errors the background,

observation and analysis pdfs are:

P.(X) =bexp
P,(x) = 0exp

(X- x,) B (x-x,)/2]

(y- HX))' R (y- H(x))/2]

F.(x) =aR,(x)F,(X)

where b, o, and

a are normalizing factors.

 Maximum probability estimate minimizes

J(X) =-InP,(x)



Comments

» Biases occur in background and observations.
Remove them if known, otherwise analysis is
sub-optimal. Monitor (O-B), but is the bias Iin
the model or in observations?

B and O errors usually uncorrelated, but could
be correlations in satellite retrievals.

 Error in the linearization of H should be much
smaller than observational errors for all values
of X- X, metinthe analysis procedure.



Effect of Observed Variables
on Unobserved Variables

 Implicitly through the governing
equations of the (forecast) model.

« Explicitly through the off-diagonal terms
In B:

/

Céed © cég@ 0 g, 0
gc bgbz(y1 g g bgbiyl X)= gDXm

assume that y, is a measurement of x,, but x, not measured




Choice of State Variables and
Preconditioning

 Free to choose which variables to use to
define state vector, x(t)

 We'd like to make B diagonal
— may not know covariances very well

— want to make the minimization of J more
efficient by “preconditioning”: transforming
variables to make surfaces of constant J
nearly spherical in state space



Cost Function for Correlated Errors
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Cost Function for

Uncorrelated Errors




Cost Function for
Uncorrelated Errors

Xy Scaled Variables




The Kalman Filter



Kalman Filter
(expensive)

Use model equations to
propagate B forward in time.

B — B(t)

Analysis step as in Ol




Evolution of Covariance Matrices

an+1 — M (Xan) — M (th +ean)
=M(x,")+M"," +...

where M 1sthenon - linear model

and M " iscalled thetangent linear model

th+1 =M (th) - €

Subtract: e, =M"e." +e_



Theforecast error covarianceis:
B(t,..) =<(&,"")(&,"™")" >

=M (t,)A(t,)M (t,) +Q(t,)
where Q=<ege ' >

M istheadjoint of the
tangent linear model.




X, The Kalman Filter




Remarks

* In Ol (and 3d-VAR) isolated observation
given more weight than observations close
together (forecast errors have large
correlations at nearby observation points).

 When several observations are close
together calculation of weights may be ill-
posed. Therefore combine into a “super
observation”.



Extended Kalman Filter

 Assumes the model is non-linear and
Imperfect.

 The tangent linear model depends on the
state and on time.

e Could be a “gold standard” for data
assimilation, but very expensive to implement
because of the very large dimension of the
state space (~ 10°% — 107 for NWP models).



Ensemble Kalman Filter

Carry forecast error covariance matrix
forward in time by using ensembles of
forecasts:

K
L8 (- <X )l <x' )T
K-1;
Only ~ 10 + forecasts needed.

Does not require computation of tangent
linear model and its adjoint.

Does not require linearization of evolution of
forecast errors.

Fits in neatly into ensemble forecasting.

B »




4d-Variational Assimilation



4D Variational Data Assimilation

obs. &

errors
AN

given X(t,), the
forecast Is
deterministic

| |
t t

vary OX(tO) for best fit to data

>



4d-Variational Assimilation

I =SB 1Y, - HOOTR Y, - H)I

i %[X(to) - X" (to)]T Bo_l[x(to) - X (t)]

where x(t.) =M, . (X(t,)) 1.e.themodel istreated
asastrong constraint



4d-VAR Continued

The 2" term on the RHS of the cost function
measures the distance to the background

at the beginning of the interval. The term
helps join up the sequence of optimal

trajectories found by minimizing the cost
function for the observations. The “analysis”
IS then the optimal trajectory in state space.
Forecasts can be run from any point on the
trajectory, e.g. from the middle.




4d-VAR For Single Observation

at time t
‘ngo,t))
X~ -
X  whereH(x) =
“ (X)=Y
\ -
\ : ,»t
X, : X



Some Matrix Algebra
J=I0)

Then I :aeﬂxg 15 -

%X, &M%,g T
Let J havethefollowing form: J =z" (x)Az(X)

1J adTZo
% Xz

ﬂ _&fx 5 adTZO
éﬂxog Eﬂxﬂ

Then it can beshown that Az

Combining these results:




4d-VAR for Slngle Observation
J(x(X,)) ‘—[y H(X(x,))] "Ry - H(x(X,))]
By using results on slide" Some Matrix Algeb_
11J

ﬂT =" LB@tHTR-l[y - H (X(Xo))] ° - LTc-)®td
0

X 0 0 _88M o, (%) O

I-0®t = Ltn_1®t L t1®t2LO®t1

T —1 T T T
\ LO®t_LO®t1Ltl®t2 Lnl®t _




4d-VAR Procedure

b
Choose X,,X; for example.

Integrate full (non-linear) model forward in
time and calculate d for each observation.

Map d back to t=0 by backward integration of
TLM, and sum for all observations to give the
gradient of the cost function.

Move down the gradient to obtain a better
Initial state (new trajectory “hits” observations
more closely)

Repeat until some STOP criterion is met.



Comments

 4d-VAR can also be formulated by the method of
Lagrange multipliers to treat the model equations as
a constraint. The adjoint equations that arise in this
approach are the same equations we have derived
by using the chain rule of partial differential
equations.

* If model is perfect and B, is correct, 4d-VAR at final
time gives same result as extended Kalman filter (but
the covariance of the analysis is not available in 4d-
VAR).

 4d-VAR analysis therefore optimal over its time
window, but less expensive than Kalman filter.



Incremental Form of 4d-VAR

 The 4d-VAR algorithm presented earlier is
expensive to implement. It requires repeated
forward integrations with the non-linear
(forecast) model and backward integrations
with the TLM.

 When the initial background (first-guess)
state and resulting trajectory are accurate, an
Incremental method can be made much
cheaper to run on a computer.



Incremental Form of 4d-VAR

The incremental form of the cost function is defined by

00 =008 00 OGN

18 _
+§a[yi - HX'(t))- HL(t,,t)dx ] Ry, - H(X"(t))- H,L(t,,t )dx,]
i=0 L J g J
Y‘\/V
Taylor series expansion
about first-guess trajectory

X' (t)




4D Variational Data Assimilation

 Advantages

—consistent with the governing egs.
—Iimplicit links between variables

e Disadvantages
—Very expensive
—model is strong constraint



Some Useful References

Atmospheric Data Analysis by R. Daley, Cambridge
University Press.

Atmospheric Modelling, Data Assimilation and
Predictability by E. Kalnay, C.U.P.

The Ocean Inverse Problem by C. Wunsch, C.U.P.
Inverse Problem Theory by A. Tarantola, Elsevier.

Inverse Problems in Atmospheric Constituent
Transport by I.G. Enting, C.U.P.

ECMWEF Lecture Notes at www.ecmwf.int
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