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Spreading of Information from 
Single Pressure Obs.
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3D variational data assimilation - ozone at 10hPa
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The data assimilation cycle: ozone at 10hPa



Estimating Error Statistics

• Error variances reflect our uncertainty in the 
observations or background.

• Often assume they are stationary in time and 
uniform over a region of space.

• Can estimate by observational method or as 
forecast differences (NMC method).

• More advanced, flow dependent errors 
estimated by Kalman filter.



Estimating Covariance Matrix 
for Observations, O

• O usually quite simple: 
– diagonal or 
– for nadir-sounding satellites, non-zero 

values between points in vertical only 

• Calibration against independent 
measurements



Estimating the Error Covariance 
Matrix B

• Model B with simple functions based on 
comparisons of forecasts with 
observations:

• Error growth in short-range forecasts 
“verifying” at the same time (NMC 
method)
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state vector at time t from forecast 48h or 24 h earlier
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3d-Variational Data 
Assimilation



Variational Data Assimilation
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Variational Data Assimilation

nonlinear operator 
assimilate y directly 
global analysis



Remarks on 3d-VAR

• Can add constraints to the cost function, 
e.g. to help maintain “balance”

• Can work with non-linear observation 
operator H.

• Can assimilate radiances directly 
(simpler observational errors).

• Can perform global analysis instead of 
OI approach of radius of influence.



Maximum Probability or 
Likelihood

• For Gaussian errors the background, 
observation and analysis pdfs are:

where b, o, and a are normalizing factors.
• Maximum probability estimate minimizes  

)()( a)(
]2/))(())(exp[( o)(

]2/)()exp[( b)(

oba

1T
o

b
1T

bb

xxx
xyRxyx

xxBxxx

PPP
HHP

P

=
−−=

−−=
−

−

)(ln)( a xx PJ −=



Comments

• Biases occur in background and observations. 
Remove them if known, otherwise analysis is 
sub-optimal. Monitor (O-B), but is the bias in 
the model or in observations?

• B and O errors usually uncorrelated, but could 
be correlations in satellite retrievals.

• Error in the  linearization of H should be much 
smaller than observational errors for all values 
of               met in the analysis procedure.bxx −



Effect of Observed Variables 
on Unobserved Variables

• Implicitly through the governing 
equations of the (forecast) model.

• Explicitly through the off-diagonal terms 
in B:
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Choice of State Variables and 
Preconditioning

• Free to choose which variables to use to 
define state vector, x(t)

• We’d like to make B diagonal
– may not know covariances very well 
– want to make the minimization of J more 

efficient by “preconditioning”: transforming 
variables to make surfaces of constant J 
nearly spherical in state space
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Cost Function for Correlated Errors
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Cost Function for 

Uncorrelated Errors
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Scaled Variables



The Kalman Filter



Kalman Filter
(expensive)

Use model equations to                
propagate B forward in time.

B        B(t)

Analysis step as in OI



Evolution of Covariance Matrices
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The Kalman Filter
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Remarks

• In OI (and 3d-VAR) isolated observation 
given more weight than observations close 
together (forecast errors have large 
correlations at nearby observation points).

• When several observations are close 
together calculation of weights may be ill-
posed. Therefore combine into a “super 
observation”.



Extended Kalman Filter

• Assumes the model is non-linear and 
imperfect.

• The tangent linear model depends on the 
state and on time.

• Could be a “gold standard” for data 
assimilation, but very expensive to implement 
because of the very large dimension of the 
state space (~ 106 – 107 for NWP models).



Ensemble Kalman Filter
• Carry forecast error covariance matrix 

forward in time by using ensembles of 
forecasts:

• Only ~ 10 + forecasts needed.
• Does not require computation of tangent 

linear model and its adjoint. 
• Does not require linearization of evolution of 

forecast errors.
• Fits in neatly into ensemble forecasting.
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4d-Variational Assimilation



4D Variational Data Assimilation

given X(to), the 
forecast is 
deterministic

vary X(to) for best fit to data
to t

obs. & 
errors



4d-Variational Assimilation
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4d-VAR Continued

The 2nd term on the RHS of the cost function 
measures the distance to the background       
at the beginning of the interval. The term 
helps join up the sequence of optimal 
trajectories found by minimizing the cost 
function for the observations. The “analysis”
is then the optimal trajectory in state space. 
Forecasts can be run from any point on the 
trajectory, e.g. from the middle. 



4d-VAR For Single Observation
at time t
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4d-VAR for Single Observation
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4d-VAR Procedure

• Choose               for example.
• Integrate full (non-linear) model forward in 

time and calculate    for each observation.
• Map    back to t=0 by backward integration of 

TLM, and sum for all observations to give the 
gradient of the cost function.

• Move down the gradient to obtain a better 
initial state (new trajectory “hits” observations 
more closely)

• Repeat until some STOP criterion is met.

note: not the most efficient algorithm
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Comments
• 4d-VAR can also be formulated by the method of 

Lagrange multipliers to treat the model equations as 
a constraint. The adjoint equations that arise in this 
approach are the same equations we have derived 
by using the chain rule of partial differential 
equations.

• If model is perfect and B0 is correct, 4d-VAR at final 
time gives same result as extended Kalman filter (but 
the covariance of the analysis is not available in 4d-
VAR).

• 4d-VAR analysis therefore optimal over its time 
window, but less expensive than Kalman filter.



Incremental Form of 4d-VAR

• The 4d-VAR algorithm presented earlier is 
expensive to implement. It requires repeated 
forward integrations with the non-linear 
(forecast) model and backward integrations 
with the TLM.

• When the initial background (first-guess) 
state and resulting trajectory are accurate, an 
incremental method can be made much 
cheaper to run on a computer. 



Incremental Form of 4d-VAR

                           

]),())(([]),())(([
2
1

)()(
2
1

)(

by defined isfunction cost   theof form lincrementa The

00
1T

00
0

0
1

0
T

00

xLHxyRxLHxy

xBxx

δδ

δδδ

iii
f

iii

N

i
ii

f
i tttHtttH

J

−−−−+

=

−

=

−

∑

Taylor series expansion 
about first-guess trajectory 

)( i
f tx

Minimization can be done in  lower dimensional space

)()(  where 000 tt bxxx −=δ



4D Variational Data Assimilation

• Advantages
– consistent with the governing eqs.
– implicit links between variables

• Disadvantages
– very expensive
– model is strong constraint



Some Useful References

• Atmospheric Data Analysis by R. Daley, Cambridge 
University Press.

• Atmospheric Modelling, Data Assimilation and 
Predictability by E. Kalnay, C.U.P.

• The Ocean Inverse Problem by C. Wunsch, C.U.P.
• Inverse Problem Theory by A. Tarantola, Elsevier.
• Inverse Problems in Atmospheric Constituent 

Transport by I.G. Enting, C.U.P.
• ECMWF Lecture Notes at www.ecmwf.int
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