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The current challenge in C cycle research

Objective To produce estimates & predictions of 
ecosystem carbon exchange with 
quantifiable uncertainty. 

Complications Observations have gaps & instrumental 
weaknesses. 
Models tend to oversimplify and may 
miss key processes and linkages.

Solution Data assimilation provides a method to 
combine models and data to produce a 
more accurate description of ecosystem 
dynamics.



Global Carbon Data Assimilation System
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Source: Ciais et al. 2003 IGOS-P Integrated Global 
Carbon Observing Strategy



Terrestrial component
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Carbon Cycle – Earth Observation Interfaces
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Issues 

u Monitoring 
Consistency of models and data:

- are model and measurement 
quantities compatible?

- comparability of values
Timescales (re-analysis)

u Prediction
Are model internal processes and 
parameters testable and credible?



S is the state vector describing the vegetation-soil 
system.
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The Functioning of a DVM



Calibrating the SDGVM phenology module 
with EO data



 

SIBERIA-II: Multi-Sensor Concepts 
for Greenhouse Gas Accounting of Northern Eurasia

5th Framework Project , 2002-2005
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The Central Siberia dataset: ~ 2 M km2



The CESBIO budburst algorithm

u Data set: SPOT-VEG 1999-2001
u Based on minimum in time-series of NDWI data
u Uncertainties in recovered budburst date ~ 7 

days



The Date of budburst derived from 
minimum NDWI (VGT sensor, 2000) N. Delbart, CESBIO

Day of year



Start of budburst

T0

∑
days

min(0, T – T0) > Threshold, budburst occurs.

The sum is the red area. Optimise over the 2 parameters, 
Threshold and T0 (minimum effective temperature).

When

The SDGVM budburst algorithm



The calibration procedure



Data - model comparison 1999

Budburst from NDWI data
Model budburst:

optimised parameters



Calibration parameters (forest only)
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Green-up relation to N Pacific Index



Effect of uncertainty in green-up day



‘True’ Assimilation

Vegetation model Scattering or 
reflectance model

Compare prediction 
with measurement

Modify model state to improve 
consistency between data and 
prediction 

Observation model
(forward model)



Basis of radiation models (optical)
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Basis of radiation models (optical)

u Model of canopy scattering:
– Leaf properties
– Scattering object density 

(LAI), orientation, and 
spatial distribution 

– Soil / understorey
properties for low density 
canopies

u solutions by analytical or 
numerical methods



Link to the C models

u C models include concept of radiation model
– For calculation of intercepted radiation

u Observation model
– Provides link from subset of C-model state 

variables to EO observation
– Main linkages:

u LAI, Density (for limited conditions)
u leaf properties (hyperspectral data)

– leaf dry matter, chlorophyll (nitrogen), water
– xanthophyll cycle (light use efficiency)



Exploiting quantities derived from radiance
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Sheffield Dynamic Vegetation Global Model



Application of the models

u Testing C models (SDGVM)
– Confront predictions with observations
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“predict”

Measurement 
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“correct”

A prediction-correction system



Earth Observation

-Phenology,
-LAI,
-Land cover…
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Williams et al., 2004
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Rtotal & Net Ecosystem Exchange of CO2 

C = carbon pools
A = allocation
L = litter fall
R = respiration (auto- & heterotrophic)
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a) Model only: SD=364

d) All data: SD=26
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Conclusions

u Calibration of DVM parameters with EO data provides a means to 
improve the predictive power of the models, e.g., phenology, fire.

u Well-developed forward models for scattering and reflectance 
exist; a current challenge is to interface them to biospheric
models for monitoring and assimilation.

u Because of possible problems in derived products, such as
fAPAR, assimilation of radiances sems preferable. However, this 
is dependent on how radiation absorption is represented in the
biospheric model.

u Successful assimilation schemes have just been developed for
biospheric models. By using existing forward models, these 
provide a framework for assimilating EO data. 

u Watch this space!


