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Lecture outline

1) Arctic Climate Change and Remote Sensing

2) Geophysics, dielectrics and thermodynamics

3) Scattering and emission modeling
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Outline of this talk

• Sea ice

• Climate Change

• Overview of remote sensing applications

• Conclusions
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A survey

• Do you believe climate change is real?

• Have you heard about the changes going on in the
Arctic?

• Have you ever been to either pole of our planet?
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Global mean surface temperature anomalies

relative to the 1951-1980 climatology
(2! error bars in blue)

Hansen et al. 2006
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Global mean surface temperature anomalies

relative to the 1951-1980 climatology

Hansen et al. 2006



The Warming ArcticThe Warming Arctic



CEOSCEOS

Local Scale Trends

in !ij (1978-2003)
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Growth and Decay of Sea Ice
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We are loosing a lot of sea ice

70,000 km-2 per year or 2.2M km-2 over 30 years

Seasonally ice free around 2050!!

Reduction in the sea ice minimum



March September

G. Flato,CCMA

The Future?The Future?



Geopolitical Response?Geopolitical Response?

NW Passage 

NE Passage

Panama
(+ 11 000 km)

Cape Horn
(+ 19 000 km)

A new ocean to navigate, exploit and preserve

Challenges and Opportunities
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Drivers
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The Arctic Oscillation (AO)

+ low press over the pole

 + high press mid lat

- high press over the pole

- low press mid lat

controls storm tracks, moisture,

etc

+

-

Connection between the

stratosphere-troposphere and

surface

(Lukovich and Barber, 2005)
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Cyclone Forcing

Oct Nov Dec

MarchFebJan

April May June

 Cyclone frequency and trajectory (CASES’04)

What is the effect of wind forcing on the surface?
Fisico and Hanesiak, 2006
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Changes in Atlantic water (depth and temperature)

Dmitrenko et al. 2006
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Ocean-sea ice-atmosphere coupling at the shelf break

Carmack and Chapman 2003
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The ice-albedo feedback mechanism (thermodynamic)

Positive feedback as more

ocean absorbs shortwave

radiation.

Complications with longwave

flux
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Physical-Biological Coupling

0.1%

10%
2%

• Process Studies

• Modelling Studies

• Scaling Studies

• Ocean-sea ice-atmosphere

• Bio-physical

• Contaminants
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How we conduct Arctic Science



How we conduct Arctic Science
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Remote Sensing
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Shuttle window (ideal case)
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Shuttle window (summer)
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Shuttle window (winter)
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Atmospheric Transmission and EMI

 

EI(!) = ER(!) + EA(!) + ET(!)
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EM interactions and Sea ice

CEOSCEOS

Bottom algae layer

EI(!) = ER(!) + EA(!) + ET(!)

RS measures the ER (!)
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Extraction of Information

• Geophysical Inversion

DN   -    W•m-2•st -1
DN   -    °Kr

°Kk  = ! $ °Kr

L* = $ °Kr% - $ °Kr&

Q* = K*+L*

TSS = ' + "K* + $i
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Data Characteristics

• Surface Scattering

! 

" <
#

32cos$
RMS height

Correlation length
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Data Characteristics

• Volume Scattering
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Complex Dielectric 
$*=$(+j$)

Ice Type

Ice Thickness

Ice Salinity

Ice Temperature

Snow Depth

.

.

Multi-

frequency

& polarized

EM

Signatures

Forward Approach

Inverse Approach

Freeze onset date Radiative

transfer model
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Applications
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Snow/Sea Ice GeophysicsSnow/Sea Ice Geophysics
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Ocean/AtmosphereOcean/Atmosphere
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BiologyBiology
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Process Studies

Processes of Interest

Energy cycle

Water cycle

Freshwater-marine

coupling

Combine in situ, RS data and modelling
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Sea ice concentration

anomalies (1978-2006)

! 

Wkij "
Wkij

n
#

1979-2001 weekly animation at www.umanitoba.ca/ceos

Deviation

-100 % +100%0%

What drives the coherence?
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 Periodicities and trends in the Anomalies?
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Slopes in ! ij  (1978-2001)

Pos

Neg

P<0.01
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 R(!) = "(#(!) - "#$)(#(t + !) - "#$) $

                   (#(t) - "#$)2

e-folding times (R(*)=1/e)

• Autocorrelation functions

vary as a function of ice

dynamics and

thermodynamics

• e-folding times provide a

statistical measure of

persistence

• e-folding time spatial

distribution (efsd) shows

pattern?

Temporal autocorrelation functions and e-folding times

Lukovich and Barber, GRL 2005
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 R(!) = "(#(!) - "#$)(#(t + !) - "#$) $

                   (#(t) - "#$)2

e-folding times (R(*)=1/e)

• Distinct coherent pattern

exists

• Occurs in all years with

stronger patterns in some

than others

• Avg over 22 years

presented

Temporal autocorrelation functions and e-folding times

Lukovich and Barber, GRL 2005
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Average SLP

The Beaufort Gyre and Transpolar Drift (dynamic)



CEOSCEOSLukovich and Barber, 2005

Reversal of the Beaufort Gyre

Mean relative vorticity

-Red (Blue) shades

denote cyclonic

(anticyclonic) activity

The Beaufort Gyre and Transpolar Drift (dynamic)
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Temporal Evolution in !°

Phenomenological summary of the seasonal evolution of !° for

thick first year and multi-year sea ice from ERS data.
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The Temporal Evolution of Tb
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Evaluation of SAR sea ice concentration,

type, thermodynamic State

• MYI

• FYI

• Rubble

• Pond fraction

• Time series

• (type)

• SWE
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Linking snow distribution and ice

roughness over first-year sea ice
• Objectives:

(i) characterizing and
statistically modeling the
relationship between ice
roughness and snow
distribution and

(ii) using this relationship to
recreate the snow distribution
using a snow distribution
model and ice roughness
information.

• Methods: helicopter EM (Ice
Pic) and in situ snow sampling



Ice sampling

Monitoring met. 

parameters

Optical measurements

Passive and active 

microwave measurements

Radiative Transfer StudiesRadiative Transfer Studies

CTD casts
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0.1%

10%
2%

Ehn et al. 2006
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Spectral reflectance and brightness temperature

(In situ measurements)
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Ehn et al. 2006

Hwang et al. 2006
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PAR transmission

0.1%

10%

2%
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• Evidence of strong

air-surface exchange

of CO2.

• Flux is associated

with brine chemistry

thus link to dielectrics

• How is the carbon

used in the

cryosphere/biosphere?

• Flux is about the same

magnitude as a

wetland!

Papakyriakou, 2004

Gas permeability
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The International Polar Year



SBI: Shelf-Basin

Interactions

CFL: Circumpolar

Flaw Lead system

study

Laptev Sea

NEW Polynya

NOW Polynya

Kara Sea

Barents Sea

30 graduate students

10 postdocs

40M$
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Conclusions

• First and strongest impacts of global scale

climate change are being felt now in the Arctic.

• Remote Sensing is a key observation technique

when combined with in situ and modelling

approaches

• Measurement vs Modelling
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Next Lecture

1) Arctic Climate Change and Remote Sensing

2) Geophysics, dielectrics and thermodynamics

3) Scattering and emission modeling


