Pine Island Glacier - did we solve it?

MARCH Z. MANTE

Andrew Shepherd University of Edinburgh

PIG

Cryosphere & climate

Cryosphere & climate

Cryosphere & climate

Cryosphere & climate

Cryosphere & climate

* IPCC Assessment reports (1990, 1995, 2001)

 According to tide gauges, global sea levels have risen by 1.5 mm per year during the 20th century

 This rise is ten times greater than at any other time during the past 3000 years

Cryosphere & climate -

* IPCC Assessment reports (1990, 1995, 2001)

Cryosphere & climate

* IPCC Assessment reports (1990, 1995, 2001)

Cryosphere & climate

* IPCC Assessment reports (1990, 1995, 2001)

Cryosphere & climate

* IPCC Assessment reports (1990, 1995, 2001)

Cryosphere & climate

* IPCC Assessment reports (1990, 1995, 2001)

Cryosphere & climate

* IPCC Assessment reports (1990, 1995, 2001)

Cryosphere & climate

Cryosphere & climate

Cryosphere & climate

Cryosphere & climate -

Antarctica & sea level -

- L3 – Pine Island Glacier

West Antarctic Ice Sheet

East Antarctic Ice Sheet

Antarctica & sea level

Antarctica & sea level

 ✤ Geometry of marine based ice sheets are unstable to advance or retreat – either event would be accelerating

 West Antarctica is drained through three sectors

Only Amundsen Sea sector
 has no ice shelf barrier and is
 grounded below sea level

Antarctic mass hair	ance

Basin	Area	Observed	Elevation rate
		Area	
	$(10^6 \mathrm{km}^2)$	(10^6 km^2)	$(\mathrm{cm} \mathrm{yr}^{-1})$
K-K'	0.24	0.22	2.4 ± 0.3
J''-K	1.59	0.97	0.7 ± 0.1
J'-J''	0.8	0.07	2.5 ± 0.4
J-J'	0.24	0.19	9.2 ± 0.4
H-J	0.28	0.12	16.6 ± 0.8
G-H	0.43	0.4	-6.6 ± 0.3
F'-G	0.13	0.11	4.1 ± 0.6
F-F'	0.06	0.04	-5.6 ± 0.7
E"-F	0.19	0.19	-5.0 ± 0.3
Е'-Е''	0.49	0.18	-0.9 ± 0.3
E-E'	1.55	0.8	0.1 ± 0.1
D"-E	0.28	0.26	0.1 ± 0.2
D'-D''	0.13	0.06	-0.1 ± 0.5
D-D'	0.74	0.67	0.7 ± 0.2
C'-D	1.15	1.08	0.1 ± 0.3
C-C'	0.7	0.63	4.9 ± 0.4
B-C	1.29	1.27	1.2 ± 0.1
А"-В	0.22	0.14	1.9 ± 0.4
A'-A''	0.42	0.37	-0.9 ± 0.2
A-A'	0.59	0.55	0.8 ± 0.1
K'-A	0.19	0.16	3.9 ± 0.3
WAIS	4.16	2.09	-0.5 ± 0.1
EAIS	7.54	6.4	1.1 ± 0.1
AIS	11.7	8.49	0.7 ± 0.1

 Table 1 Elevation change of the Antarctic ice sheet 1992 - 2004

Antarctic mass balance -

Basin	Area	Observed	Elevation rate
		Area	
	$(10^6 {\rm km}^2)$	(10^6 km^2)	$(\mathrm{cm} \mathrm{yr}^{-1})$
K-K'	0.24	0.22	2.4 ± 0.3
J''-K	1.59	0.97	0.7 ± 0.1
J'-J''	0.8	0.07	2.5 ± 0.4
J-J'	0.24	0.19	9.2 ± 0.4
H-J	0.28	0.12	16.6 ± 0.8
G-H	0.43	0.4	-6.6 ± 0.3
F'-G	0.13	0.11	4.1 ± 0.6
F-F'	0.06	0.04	-5.6 ± 0.7
E"-F	0.19	0.19	-5.0 ± 0.3
Е'-Е''	0.49	0.18	-0.9 ± 0.3
E-E'	1.55	0.8	0.1 ± 0.1
D"-E	0.28	0.26	0.1 ± 0.2
D'-D''	0.13	0.06	-0.1 ± 0.5
D-D'	0.74	0.67	0.7 ± 0.2
C'-D	1.15	1.08	0.1 ± 0.3
C-C'	0.7	0.63	4.9 ± 0.4
B-C	1.29	1.27	1.2 ± 0.1
А"-В	0.22	0.14	1.9 ± 0.4
A'-A''	0.42	0.37	-0.9 ± 0.2
A-A'	0.59	0.55	0.8 ± 0.1
K'-A	0.19	0.16	3.9 ± 0.3
WAIS	4.16	2.09	-0.5 ± 0.1
EAIS	7.54	6.4	1.1 ± 0.1
AIS	11.7	8.49	0.7 ± 0.1

 Table 1 Elevation change of the Antarctic ice sheet 1992 - 2004

Strong thinning

Elevation trends are due to either snowfall or ice flow

Snowfall typically fluctuates about a long term mean on decadal timescales by $\sim 25~\%$

Antarctic mass balance

On average, Amundsen
Sea sector has deflated by
7 cm yr⁻¹

Snowfall variability is 6
 cm yr⁻¹

 Although mean deflation is comparable to snowfall variability, signal is highly coherent and peak rate is 50 times greater

Amundsen Sea

Amundsen Sea Sector is40 % of WAIS

Drained by the PineIsland, Thwaites, andSmith glaciers

*Ice volume sufficient to
raise sea levels by 1.1 m

Deflation is highly correlated with ice flow

Pine Island Glacier

Image weight between the second s

Pine Island Glacier

Consistent with InSAR grounding line retreat

Rignot, Science, 1998

Pine Island Glacier -

Joughin et al, *GRL*, 2003

Origin of imbalance?

Origin of imbalance?

Origin of imbalance?

Origin of imbalance?

- * ~ 3d model of PIG stress regime (longitudinal, lateral, vertical, gravitational)
 * Glen's flow law
- * Simplify by assuming down-stream component of velocity dominates
- * Equations solved numerically by finite differences

✤ Retreat of
GL by 5 and
10 km,
decrease ice
plain traction
by 50%

Instant
 response is
 thinning up to
 70 km from
 GL

Insufficient
 explain
 observed
 rates inland

- 2d verticallyintegrated model
- Assumes vertical shear minimal
- Dynamic
 boundary conditions
 at shelf front
- ✤ Glen's flow law
- Thicknessevolution from iceflow perturbations

- 2d verticallyintegrated model
- Assumes vertical shear minimal
- Dynamic
 boundary conditions
 at shelf front
- ✤ Glen's flow law
- Thicknessevolution from iceflow perturbations

- 2d verticallyintegrated model
- Assumes vertical shear minimal
- Dynamic
 boundary conditions
 at shelf front
- ✤ Glen's flow law
- Thicknessevolution from iceflow perturbations

- 2d verticallyintegrated model
- Assumes vertical shear minimal
- Dynamic
 boundary conditions
 at shelf front
- ✤ Glen's flow law
- Thicknessevolution from iceflow perturbations

- 2d verticallyintegrated model
- Assumes vertical shear minimal
- Dynamic
 boundary conditions
 at shelf front
- ✤ Glen's flow law
- Thicknessevolution from iceflow perturbations

- 2d verticallyintegrated model
- Assumes vertical shear minimal
- Dynamic
 boundary conditions
 at shelf front
- Glen's flow law
- Thicknessevolution from iceflow perturbations

- 2d verticallyintegrated model
- Assumes vertical shear minimal
- Dynamic
 boundary conditions
 at shelf front
- ✤ Glen's flow law
- Thicknessevolution from iceflow perturbations

- 2d verticallyintegrated model
- Assumes vertical shear minimal
- Dynamic
 boundary conditions
 at shelf front
- Glen's flow law
- Thicknessevolution from iceflow perturbations

- 2d verticallyintegrated model
- Assumes vertical shear minimal
- Dynamic
 boundary conditions
 at shelf front
- ✤ Glen's flow law
- Thicknessevolution from iceflow perturbations

* Accumulated thinning matches observed changes inland

Conclude that a reduction in ice thickness at the grounding line is sufficient to trigger inland thinning

Payne et al., 2004

Origin of perturbation -

Amundsen Sea glaciers terminate in short floating ice shelves

Origin of perturbation -

Bathymetry shows deep troughs channel water to glacier grounding lines

Origin of perturbation -

Pine Island Bay gyre draws water from continental shelf

Origin of perturbation -

Circumpolar Deep water is 4 C above freezing point

Origin of perturbation

Warm CDW infiltrates Pine Island Bay and reaches glacier grounding lines

Ice shelf thinning mirrors that of tributary glaciers

Origin of perturbation

✤ Thinning is correlated with melt potential of ocean current (10 m yr⁻¹ C⁻¹)

Origin of perturbation

2d plume model of ice-ocean interaction
 beneath PIG reproduces observed pattern of
 steady-state ice melting

Origin of perturbation

Perturbation experiment shows a 0.5 °C warming of ocean temperature is sufficient to cause observed ice shelf thinning

The future

The future

The future

Ocean temperatures are set to rise by 1.0 C around Antarctica

ESA Summer School 2006

The future -

- * Amundsen Sea glaciers are losing 30 Gt of ice each year
- ★ Equivalent to a sea level contribution of 0.1 mm yr⁻¹
- ✤ Triggered by ocean currents 0.5°C above freezing
- * Consistent with rate of global warming during 20th century
- * All coastal, submarine glaciers in Antarctica are in retreat
- * PIG retreat has accelerated over last decade
- ✤ Global oceans set to warm 1°C next century
- ★ 21st century response not in current sea level projections

ESA Summer School 2006

- * Amundsen Sea glaciers are losing 30 Gt of ice each year
- ✤ Equivalent to a sea level contribution of 0.1 mm yr⁻¹
- ✤ Triggered by ocean currents 0.5°C above freezing
- * Consistent with rate of global warming during 20th century
- * All coastal, submarine glaciers in Antarctica are in retreat
- * PIG retreat has accelerated over last decade
- ✤ Global oceans set to warm 1°C next century
- ★ 21st century response not in current sea level projections

- * Amundsen Sea glaciers are losing 30 Gt of ice each year
- ★ Equivalent to a sea level contribution of 0.1 mm yr⁻¹
- ✤ Triggered by ocean currents 0.5°C above freezing
- * Consistent with rate of global warming during 20th century
- * All coastal, submarine glaciers in Antarctica are in retreat
- PIG retreat has accelerated over last decade
- ✤ Global oceans set to warm 1°C next century
- ★ 21st century response not in current sea level projections

- * Amundsen Sea glaciers are losing 30 Gt of ice each year
- ★ Equivalent to a sea level contribution of 0.1 mm yr⁻¹
- ✤ Triggered by ocean currents 0.5°C above freezing
- ✤ Consistent with rate of global warming during 20th century
- * All coastal, submarine glaciers in Antarctica are in retreat
- * PIG retreat has accelerated over last decade
- ✤ Global oceans set to warm 1°C next century
- ★ 21st century response not in current sea level projections

- * Amundsen Sea glaciers are losing 30 Gt of ice each year
- ★ Equivalent to a sea level contribution of 0.1 mm yr⁻¹
- ✤ Triggered by ocean currents 0.5°C above freezing
- * Consistent with rate of global warming during 20th century
- * All coastal, submarine glaciers in Antarctica are in retreat
- * PIG retreat has accelerated over last decade
- ✤ Global oceans set to warm 1°C next century
- ★ 21st century response not in current sea level projections

- * Amundsen Sea glaciers are losing 30 Gt of ice each year
- ★ Equivalent to a sea level contribution of 0.1 mm yr⁻¹
- ✤ Triggered by ocean currents 0.5°C above freezing
- * Consistent with rate of global warming during 20th century
- * All coastal, submarine glaciers in Antarctica are in retreat
- PIG retreat has accelerated over last decade
- ✤ Global oceans set to warm 1°C next century
- ★ 21st century response not in current sea level projections

ESA Summer School 2006

Summary -

- * Amundsen Sea glaciers are losing 30 Gt of ice each year
- ★ Equivalent to a sea level contribution of 0.1 mm yr⁻¹
- ✤ Triggered by ocean currents 0.5°C above freezing
- * Consistent with rate of global warming during 20th century
- * All coastal, submarine glaciers in Antarctica are in retreat
- PIG retreat has accelerated over last decade
- ✤ Global oceans set to warm 1°C next century
- ★ 21st century response not in current sea level projections

ESA Summer School 2006

Summary -

- * Amundsen Sea glaciers are losing 30 Gt of ice each year
- ★ Equivalent to a sea level contribution of 0.1 mm yr⁻¹
- ✤ Triggered by ocean currents 0.5°C above freezing
- * Consistent with rate of global warming during 20th century
- * All coastal, submarine glaciers in Antarctica are in retreat
- PIG retreat has accelerated over last decade
- ✤ Global oceans set to warm 1°C next century
- ✤ 21st century response not in current sea level projections

ESA Summer School 2006

Summary -

– L3 – Pine Island Glacier

89 % of coastal 100 km remains unsurveyed

ESA Summer School 2006