Climate-Chemistry Interactions ## Aerosol radiative effects #### **Direct effects** Aerosols absorb and reflect solar radiation #### **Indirect effects** Aerosols change the properties of clouds (increase in reflectivity and lifetime) Aerosols with the longest atmospheric lifetime (d=0.1-1 micron) are also the most radiatively active Aerosol effects are particularly important at the regional scale because of their short lifetime # Many different types of aerosols are found in the atmosphere - Sulfates - Nitrates - Organic Carbon (OC) - Black Carbon (BC) - Mineral Dust - Sea Spray - Volcanic # The atmospheric aerosol cycle #### Production rate of different aerosols #### Radiative Forcing of GHG and Aerosols Biomass Burning OC and BC Sulfat Sulfate Indirect Effect (Type I) # Climatic Impacts of Aerosols - Surface and atmospheric cooling (reflecting aerosols) - Atmospheric warming (absorbing aerosols) - Modification of the vertical temperature profile and stability, with an effect on convection - Modification of the precipitation efficiency in cloud systems - Modification of the cloud structure, chemical composition and related radiative forcing - Modification of large scale and regional circulations (e.g. Monsoons) Some case studies of aerosol climatic effects (using the regional climate model RegCM3) # The RegCM3 model - Dynamics: MM5 Hydrostatic (Grell et al 1994) - Radiation: CCM3 (Kiehl 1996) - Large-Scale Clouds & Precipitaion: SUBEX (Pal et al 2000) - Cumulus convection: Grell (1993) Anthes-Kuo (1977) Emanuel (1991) - Boundary Layer: Holtslag (1990) - Tracers/Aerosols/dust: Qian et al (2001); Solmon et al (2005); Zakey et al. (2006) - Land Surface: BATS (Dickinson et al 1993) SUB-BATS (Giorgi et al 2003) CLM (Dai et al. 2003) - Ocean Fluxes BATS (Dickinson et al 1993) Zeng et al (1998) - Computations Parallel Code (Bi, Gao, Yeh) Multiple Platforms User-Friendly Code #### Simple "on-line" Aerosols in RegCM3 • General approach Tracer model / RegCM3 (from Giorgi et al., Qian et al.) $$\frac{\partial \chi}{\partial t} = -\overline{V} \times \nabla \chi + F_H + F_V + T_{CUM} + S_{\chi} - R_{w,ls} - R_{w,cum} - D_{dep} + \sum Q_p - Q_l$$ Transport Primary Emissions Removal transformations Strongly dependent on the nature of the tracer • Particles and chemical species considered ("anthropogenic compounds") $$SO_2 \iff SO_4^-$$ $$BC (soot)$$ $$Hydrophilic$$ $$Hydrophobic$$ $$OC_T$$ $$(primary + secondary)$$ $$Hydrophobic$$ #### Aerosol dust model in RegCM Input parameters Soil texture (12 types, USDA) Soil erodible dry agregates distribution (Shao et al. ,2002) Land surface properties (BATS) (roughness, soil humidity, cover fractions) Regcm atmospheric variables (surface wind, air temperature, air density) **DUST** emission scheme A. Zakey Saltation (Marticorena et al. 1995) Roughness and humidity correction Suspension Sand-blasting (Alfaro et al., 1997, 2001) **Dust flux distribution** (3 log-normal emission modes) Transport bins (up to 12), usually 4 AOP / radiation Size dependent settling and surface déposition # Climate-aerosol model coupling ## The case of East Asia - During the last decades East Asia has been one of the most rapidly developing regions of the world - As a result, anthropogenic aerosol emissions and concentrations over the region have considerably increased, thereby (possibly) affecting the climate of the region - In a series of studies we investigated the possible regional climatic effects of anthropogenic aerosols over East Asia - Qian and Giorgi (1999,2000), Qian et al. (2001, 2003), Chameides et al. (1999,2002), Streets and Waldhoff (2000), Kaiser and Qian (2002), Giorgi et al. (2002,2003) ## Aerosols: Brown cloud over China 17 November 2004 # Some observational evidence of aerosol effects over East Asia Yearly coal and total energy consumption in China from 1953-1997 (left) Spatial distribution of SO₂ emission yearly change rate during 1953-1997 (right). Data from Ren et al., 1997. Aerosol extinction coefficient averaged for 1981-1998 Kaiser and Qian (2002) # Change of observed mean temperature (°C) in China Qian and Giorgi (2000) ΔT between 1981-1998 and 1951-1980 Trend of summer mean daily maximum temperature for 1954-1998 Kaiser and Qian (2002) # Annual mean and daily maximum temperature anomaly trend over the Sichuan Basin for 1954-1998 # Simulation of direct and indirect effects of anthropogenic sulfate over East Asia using RegCM # Model and experiment design - Use of an interactively coupled regional climatechemistry model (RegCM) - Inclusion of a simplified sulfur model - Realistic emissions of sulfur dioxide - Intercomparison of a series of experiments with and without direct and indirect effects of sulfate - CONT: Aerosols not radiatively active - DIR1: Direct effects only; current emissions - DIR2: Direct effects only; doubled emissions - IND1: Direct + Indirect effects; current emissions - IND2: Direct + Indirect effects; doubled emissions - Simulation period: 1993-1997 - Domain covering East Asia at 50 km grid spacing # Aerosol model components #### Transport - Advection by resolvable scale winds - Horizontal and vertical turbulent diffusion - Vertical transport by deep convection #### Removal - Wet removal by both resolvable scale and cumulus clouds - Dry deposition (constant dry deposition velocity) #### Direct effects Specification of sulfate optical properties (absortivity, scattering coefficient, asymmetry factor) #### Indirect effects Cloud droplet radius expressed as an empirical function of the aerosol mass concentration #### 850 mb Gph and Wind, DJF, CONT #### 850 mb Gph and Wind, JJA, CONT #### Conclusions - Anthropogenic sulfates (and other aerosols) have a significant impact on the surface climate of China - Surface cooling - Decrease in precipitation - Direct effects dominate in the cold (and dry) season, indirect effects dominate in the warm season and in inhibiting precipitation - The simulated aerosol-induced surface cooling is consistent with the observed record over some regions of China, most noticeably the Sichuan Basin of southwest China ### Dust simulation over East Asia (Preliminary results; 1 hour interval output) # The case of the Europe/Africa region #### Example I: SO2 and SO4 burden, DJF 2000 Shading = SO4 Isocontour = SO2 Average SO₄²⁻ concentration field (µg.m⁻³) and column burden #### **DJF 2000** #### **JJA 2000** # Example II: BC burden #### Preliminary case study: Dust storm of 20-28 February 2000 SeaWIFS (NGSFC) TOMS (aerosol index) RegCM #### Simulation of northern Sahara dust outbreak (March13-16, 2002) ## Long term dust simulation, JJA 2000 Total AOD ### Long term dust simulation, JJA 2000 Cross sections #### Conclusions - Aerosols and especially Saharan dust can have significant effects on the African monsoon - Cooling in the continental interior - Decrease of the land-ocean temperature gradient - Weakening of the monsoon circulation - Reduction of the inland penetration of the monsoon rain band - Dust feedbacks might have contributed to the Sahel drought which occurred in the 1960-90s. ### Summary - Atmospheric aerosols can have important effects on climate, especially at the regional scale - Regional climate models are especially useful tools to study aerosol effects - Interactive coupling of chemistry/aerosol and regional climate models is still in its beginning stages - More comprehensive models need to be developed (excellent area of research for young scientists)