Sea Ice, Climate Change and Remote Sensing

Prof. David Barber Canada Research Chair in Arctic System Science Director, Centre for Earth Observation Science University of Manitoba Winnipeg, MB. Canada

www.umanitoba.ca/ceos

ESA Summer School, August, 2006

Lecture outline

1) Arctic Climate Change and Remote Sensing

2) Geophysics, dielectrics and thermodynamics

3) Scattering and emission modeling

Outline of this talk

- The Electro-thermophysical concept
- The complex dielectric constant
- Scattering and emission models
- A few examples
- Conclusions

Three key features of the Arctic:

1) it is cold
2) it is dark
3) it is cloudy
4) it is changing

The Electro-thermophysical concept

Atmospheric Transmission and EMI

Review of Sea Ice Microwave Scattering Theory

- Microwave scattering from Sea Ice is controlled by three factors:
 - 1) The Complex Dielectric Constant
 - 2) The inhomogeneities of Scattering Inclusions
 - 3) The Frequency, Polarization and Sensor Geometry of the SAR

Temperature is the control

An electro-thermophysical model of snow covered sea ice

Snow

Sea Ice

Geophysics Thermodynamics Energy Flux Mass Flux Gas Flux?

The Temporal Evolution of σ°

The Temporal Evolution of Tb

Coupled sea Ice thermophysical and dielectrics model.

•The complex dielectric constant is defined as:

$$\varepsilon * = \varepsilon' + j\varepsilon''$$

 ϵ' is the permittivity

 ε'' is the loss

Frequency/Polarization and Sensor Geometry

The dielectric constant

The Complex Dielectric Constant

•The complex dielectric constant consists of a complex number

 $\epsilon * = \epsilon' + j\epsilon''$

 ϵ' is the permittivity

 ε'' is the loss

The Complex Dielectric Constant

$$\varepsilon'_{w} = \varepsilon_{w\infty} + \frac{\varepsilon_{w0} - \varepsilon_{w\infty}}{1 + (2\pi f \tau_{w})^{2}} \qquad \varepsilon''_{w} = \frac{2\pi f \tau_{w} (\varepsilon_{w0} - \varepsilon_{w\infty})}{1 + (2\pi f \tau_{w})^{2}}$$

 $\varepsilon_{w0}(T) = 88.045 - 0.4147T + 6.295 \times 10^{-4}T^{2} + 1.075 \times 10^{-5}T^{3}$ $2\pi\tau_{w}(T) = 1.1109 \times 10^{-10} - 3.824 \times 10^{-12}T + 6.938 \times 10^{-14}T^{2} - 5.096 \times 10^{-6}T^{3}$

where ε_{w0} is static dielectric constant of pure water, $\varepsilon_{w\infty}$ is high-frequency (or optical) limit of ε_w ($\varepsilon_{w\infty} = 4.9$), τ_w is relaxation time of pure water (s); *f* is electromagnetic frequency (Hz).

The Debye Model - Water

The Complex Dielectric Constant

$$\varepsilon_{b}' = \varepsilon_{w\infty} + \frac{\varepsilon_{b0} - \varepsilon_{w\infty}}{1 + (2\pi f \tau_{b})^{2}} \qquad \varepsilon_{b}'' = \frac{2\pi f \tau_{b} (\varepsilon_{b0} - \varepsilon_{w\infty})}{1 + (2\pi f \tau_{b})^{2}} + \frac{\sigma_{b}}{2\pi \varepsilon_{0} f}$$

$$\varepsilon_{b0} = \frac{(939.66 - 19.068T)}{(10.737 - T)}$$
 $\varepsilon_{\infty} = \frac{(82.79 + 8.19T^2)}{(15.68 + T^2)}$

 $2\pi\tau = 0.10990 + 0.13603 \times 10^{-2}T + 0.20894 \times 10^{-3}T^{2} + 0.28167 \times 10^{-5}T^{3}$

The Debye Model - Brine

 $\varepsilon_{ds} = 1 + 3\varepsilon_{ds}v_i \left(\frac{\varepsilon_i - 1}{\varepsilon_i + 2\varepsilon_{ds}}\right)$ Dry snow

$$\varepsilon_{ws} = \varepsilon_{ds} + \frac{m_v \varepsilon_{ws}}{3} (\varepsilon_w - \varepsilon_{ds}) \sum_{i=1}^3 [\varepsilon_{ws} + (\varepsilon_w - \varepsilon_{ws}) N_i]^{-1} \qquad \text{Wet snow}$$

$$\varepsilon_{si} = \varepsilon_i + \frac{3\varepsilon_{si}f_a(1-\varepsilon_i)}{2\varepsilon_{si}+1} + \frac{\varepsilon_{si}f_b(\varepsilon_b - \varepsilon_i)}{3} \left[\frac{1}{\varepsilon_{si}(1-N_i) + N_i\varepsilon_b} + \frac{1}{\varepsilon_{si}(1+N_1) + \varepsilon_b(1-N_1)} \right]$$
Sea Ice

Change in ε' and ε'' at the sea ice surface as a function of air temperature and snow thickness.

Modeled permittivity () and loss () as a function of snow salinity and snow temperatures

Bulk dielectric permittivity (ϵ') of snow as a function of water volume and snow density

Link between dielectrics and scattering/emission

 $\sigma_{o_{total}} = \sigma_{o_{ss}} + \Psi_{as}(\theta) * \sigma_{o_{sv}}(\theta') + \Psi_{s}(\theta') * \sigma_{o_{is}} + \Psi_{si}(\theta'') * \sigma_{o_{iv}}(\theta'')$

Layer properties defined by the Fresnel reflection (Γ) coefficient

 H_{I}

Scattering & Emission Models

Classes of Models

DMRT; Dense Medium Radiative Transfer; DMT: Dense Medium Theory, PS: physical optics under the scalar approximation, GO: geometric optics approximation, SP: small perturbation method

(Winebrenner et al., 1992; Nassar et al., 2000; Wiesmann and Matzler, 1999)

Emission/Scattering Theory

$\sigma_{o_{total}} = \sigma_{o_{ss}} + \Psi_{as}(\theta) * \sigma_{o_{sv}}(\theta') + \Psi_{s}(\theta') * \sigma_{o_{is}} + \Psi_{si}(\theta'') * \sigma_{o_{iv}}(\theta'')$

Forward scattering model defined for Microwave Scattering

physical optics/geometric optics

Surface Scattering

$$\sigma < \frac{\lambda}{32\cos\theta}$$

RMS height Correlation length

Volume scattering

Number density Volume fraction Scattering physics

Surface Scattering

$$\sigma_{\rm S}^{\rm o}(\theta) = 2 |\Gamma_{\rm HH}|^2 \cos^2 \theta \exp(-4 K_{\rm o}^2 \sigma^2 \cos^2 \theta)$$

•
$$\sum_{n=1}^{\infty} \frac{(4K_o^2 \sigma^2 \cos^2 \theta)^n}{n!} \cdot \frac{(K_o^2 n / 1)}{(4K_o^2 \sin^2 \theta + n^2 / 1^2)^{3/2}}$$

Where:

Forward scattering model defined for Microwave Scattering

Volume Scattering $\sigma_{sv}^{o}(\theta) = \frac{\sigma_{v}^{c} \cos \theta}{2K_{e}} \left(1 - \frac{1}{(\exp(K_{e}d \sec(\theta')))^{2}}\right)$

Where:

$$\sigma_{v} = N_{i} \sigma_{b_{i}} + N_{w} \sigma_{b_{w}}$$

$$\sigma_{\rm b} = \frac{64 \ \pi^5 \ r^6}{\lambda_{\rm o}^4} \left| {\rm K} \right|^2$$

Forward scattering model defined for Microwave Scattering

Features in the mm range affect scattering

Ehn et al.

Many layer SFT model (scattering and emission)

Description

-assumes the snow/sea ice is a piecewise-continuous random medium and accounts for the interference between waves reflected and transmitted coherently by the various planar layers

- accounts for the mean propagation and first-order multiple scattering effects by using bilocal and distorted born approximations

(Winebrenner et al., 1992)

Many layer SFT model (scattering and emission)

Input parameters General: frequency (GHz), angles For ice: temperature, salinity, density, ice grain size (mm), air bubble size, brine aspect ratio and tilted angle.

For snow: temperature, density, snow wetness (fractional volume)*, snow grain size (mm). *liquid water distributed between grains as well as around grains (Stogryn, 1985).

Output parameters Microwave brightness temperature (emissivity) and backscattering (sigma) for V and H polarizations.

(Winebrenner et al., 1992)

Extending signatures temporally - Ice emissivity simulated by the many layer strong fluctuation theory model. The brine skim/wet slush was set to be 5 mm, and ice salinity based on field data

HI

Hwang and Barber, JGR, in press

Some examples

Snow Thickness

Scattering Response

May 6 (Clear)

Barber and Thomas, 1998

SWE and Scattering

Observed Response to Snow Thickness

Barber et al. 1998

Figure 7: Map of change in SWE (all change is positive amounts) from March 26 to May 7, 1999 over amount first-year sea ice in Wellington Channel, Nanavat, Canada.

Yackel and Barber, 2000

SWE and Radiometry (20 sites)

Explained variance versus f,P, and θ

Frequency (19, 37, 85) Polarization (V, H) Incidence (30-60 in 5° increments)

Barber et al. 2000.

Explained variance versus f,P, and θ

Frequency (19, 37, 85) Polarization (V, H) Incidence (30-60 in 5° increments)

Barber et al. 2000.

Late season sea ice

 $\epsilon * = \epsilon' + j\epsilon''$

Melt Pond Dielectrics

 $\epsilon * = 65.80 + j36.51$

for pure water at 0°C, 5.3 GHz

Snow Patch Dielectrics

 $\epsilon * = 1.91 + j0.11$

for wet snow at -1°C, 0.3 gm.m⁻³, 0.1 Wv

The Temporal Evolution of Sigma Naught

- Several variables must be taken into consideration:
 - The effect of incidence angle
 - The effect of wind
 - The contribution to backscatter (σ°) by volume and surface scattering as dictated by the dielectrics of the system

The Effect of Incidence Angle

- During periods of cold temperatures the dielectrics of the system are considered static and changes to backscatter are a function of incidence angle and surface roughness
- The Incident Angle Calibration Model (IACM) standardized σ° to the near range of the RADARSAT-1 swath (δ°)
 - The IACM explained in excess of 99% of the variability in backscatter which resulted from changes in incidence angle

The Effect of Wind

• Under calm conditions, volume scattering within bare ice (σ_i) results in backscatter which is greater than backscatter caused by surface scattering from melt ponds (σ_m) or $\sigma_i > \sigma_m$.

This allows for an estimation of melt ponds from SAR

 Over melt ponds, there is an amplification of σ° as a function of wind speed provided wind direction is orthogonal to the SAR pulse

- Between 1.5ms⁻¹ - 2.5ms⁻¹ $\sigma_i = \sigma_m$.

- Above 2.5ms⁻¹ $\sigma_i < \sigma_m$.

Pond fraction (PF), wind speed (W), wind direction in degrees (D) and weather are all indicated for each image. The images have been calibrated to ASF gamma values and areas of low backscatter appear dark. All images are courtesy of the Canadian Space Agency (© CSA, 2002)

Surface Albedo

The Temporal Evolution of σ°

The Temporal Evolution of Tb

Conclusions

- Electro-thermophysical model (heuristic to physical)
- Emission/scattering models
- Geophysical vs Thermodynamic state (processes)
- Initialization and steering of models, data assimilation
- Scale related science (micro to hemispheric)
- Merger of environmental science and technologies

A metaphor for science and technology

Acknowledgements:

John Yackel John Hanesiak Tim Papkyriakou Ryan Galley Alex Langlois Phil Hwang John Iacozza CJ Mundy Rob Kirk

Sheldon Drobot Theresa Fisico Theresa Nichols Chistina Blouw Isabelle Harouche Andrew Thomas Klaus Hochheim Jens Ehn Mats Granskog

Wanli Woo Randy Scharien Katherine Wilson Wayne Chan Jennifer Lukovich

The real forces behind this work

For more information

<u>dbarber@cc.umanitoba.ca</u> <u>www.umanitoba.ca/ceos</u>

Addendum

