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L ecture outline

1) Arctic Climate Change and Remote Sensing

2) Geophysics, dielectrics and thermodynamics

3) Scattering and emission modeling




Outline of this talk

The Electro-thermophysical concept
The complex dielectric constant
Scattering and emission models

A few examples

Conclusions




Three key features of the Arctic:

1) it is cold

2) It Is dark

3) it is cloudy
4) it is changing




The Electro-thermophysical
concept




Atmospheric Transmission and EMI
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Review of Sea Ice Microwave
Scattering Theory

» Microwave scattering from Sea Ice is
controlled by three factors:
— 1) The Complex Dielectric Constant

— 2) The inhomogeneities of Scattering
Inclusions

— 3) The Frequency, Polarization and Sensor
Geometry of the SAR




Forward Approach
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Temperature 1s the control
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An electro-thermophysical model of snow
covered sea 1ce







Snow Deﬁsity (ps; Kg'm™)
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The Temporal Evolution of o°
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Coupled sea Ice thermophysical and
dielectrics model.




Frequency/Polarization and
Sensor Geometry
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The dielectric constant




The Complex Dielectric Constant




The Complex Dielectric Constant

The Debye Model - Water




The Complex Dielectric Constant

The Debye Model - Brine




Dielectric Mixture Models

Dry snow

Wet snow

Sea Ice




Dielectric Mixture Models
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Dielectric Mixture Models
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Dielectric Mixture Models
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Link between dielectrics and
scattering/emission
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Scattering & Emission
Models




Classes of Models

Integrated surface-
volume signature
model Rough surface

scattering

Reflection-volume
signature

Multi-layer reflection Volume scattering

Rayleigh scattering
DMRT PS

DMT GO
SP

*No scattering effects N eilection effects Integration
*Applicable only to

Young saline ice

Multilayer Fresnel formula

*Poor agreements (at

H-pol) over young ice,

frozen melt ponds -No sianifi

Many layer SFT i : o significant
dnd EagplEs Ut Ak improvement from

*Scattering effects GHz DMT

to some extent *This indicated no
«Applicable to Numerical method significant rough
Young saline ice, Empirical method surface scattering
frozen melt ponds «Good potential effects

(up to 40 GHz) eBackscattering

*bubbly ice (up to problem

20 GHz) *Snow application

DMT-integration model

DMRT; Dense Medium Radiative Transfer; DMT: Dense Medium Theory, PS: physical optics under the scalar
approximation, GO: geometric optics approximation, SP: small perturbation method




Emission/Scattering Theory
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Forward scattering model defined for
Microwave Scattering




physical optics/geometric optics

» Surface Scattering

Specular Reflector Diffuse Reflector Lambertian Reflector




Volume scattering

Number density
Volume fraction
Scattering physics




Surface Scattering

Forward scattering model defined for
Microwave Scattering




Volume Scattering

Forward scattering model defined for
Microwave Scattering




Jres in the mm
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Many layer SFT model (scattering and emission)

Description

-assumes the snow/sea ice is a piecewise-continuous random
medium and accounts for the interference between waves reflected
and transmitted coherently by the various planar layers

- accounts for the mean propagation and first-order multiple scattering
effects by using bilocal and distorted born approximations




Many layer SFT model (scattering and emission)

Input parameters

General: frequency (GHz), angles

For ice: temperature, salinity, density, ice grain size (mm), air
bubble size, brine aspect ratio and tilted angle.

For snow: temperature, density, snow wetness (fractional volume)™*,
snow grain size (mm).

*liquid water distributed between grains as well as around grains
(Stogryn, 1985).

Output parameters
Microwave brightness temperature (emissivity) and backscattering
(sigma) for V and H polarizations.




Extending signatures temporally - Ice emissivity simulated by the
many layer strong fluctuation theory model. The brine skim/wet slush
was set to be 5 mm, and ice salinity based on field data

Hwang and Barber, JGR; in press CEDS 4




Some examples




Snow Thickness

« Scattering Response

May 6 (Clear) May 9 (Cloudy)

- May 9 (Cloudy)

o° (dB)
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SWE and Scattering

* Observed Response to Snow Thickness

Barber et al. 1998
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SWE and Radiometry (20 sites)
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Site Number

Barber et al. 2000.




EXplained variance versus
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The Temporal Evolution of
Sigma Naught

e Several variables must be taken into
consideration:

T
g
3

ne effect of incidence angle
ne effect of wind

ne contribution to backscatter (o°) by

volume and surface scattering as dictated
by the dielectrics of the system




The Effect of Incidence Angle

* During periods of cold temperatures the dielectrics of
the system are considered static and changes to
backscatter are a function of incidence angle and
surface roughness

The Incident Angle Calibration Model (IACM)
standardized o° to the near range of the RADARSAT-
1 swath (8°)

— The IACM explained in excess of 99% of the variability in
backscatter which resulted from changes in incidence angle




The Effect of Wind

* Under calm conditions, volume scattering within
bare ice (0;) results in backscatter which is
greater than backscatter caused by surface
scattering from melt ponds (o,,) or g; > g,

— This allows for an estimation of melt ponds from SAR

* Over melt ponds, there is an amplification of o° as
a function of wind speed provided wind direction
IS orthogonal to the SAR pulse

— Between 1.5ms' - 2.5ms" ¢, = 0,
— Above 2.5ms' 0, < 0.
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Strong Wind a=0.269-0.015* o°
R>=00913
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The Temporal Evolution of o°




The Temporal Evolution of To

g
g
r
8
;
§
3
-4
[44]




Conclusions

Electro-thermophysical model (heuristic to physical)
Emission/scattering models
Geophysical vs Thermodynamic state (processes)

Initialization and steering of models, data
assimilation

Scale related science (micro to hemispheric)

Merger of environmental science and technologies
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