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Lecture outline

1) Arctic Climate Change and Remote Sensing

2) Geophysics, dielectrics and thermodynamics

3) Scattering and emission modeling



CEOSCEOS

Outline of this talk

• The Electro-thermophysical concept

• The complex dielectric constant

• Scattering and emission models

• A few examples

• Conclusions
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Three key features of the Arctic:

1) it is cold

2) it is dark

3) it is cloudy

4) it is changing
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The Electro-thermophysical

concept
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Atmospheric Transmission and EMI
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Review of Sea Ice Microwave

Scattering Theory

• Microwave scattering from Sea Ice is

controlled by three factors:

– 1) The Complex Dielectric Constant

– 2) The inhomogeneities of Scattering

Inclusions

– 3) The Frequency, Polarization and Sensor

Geometry of the SAR
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Complex Dielectric 
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Temperature is the control
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An electro-thermophysical model of snow

covered sea ice
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Snow

Sea Ice
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Snow

Sea Ice
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Snow

Sea Ice

Radiative Transfer

Spectral Diffuse

Attenuation

Coefficient Kd($)



CEOSCEOS

The Temporal Evolution of !º
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The Temporal Evolution of Tb
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Coupled sea Ice thermophysical and

dielectrics model.

•The complex dielectric constant

is defined as:

!% = !" + j!#

!" is the permittivity

!# is the loss
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Frequency/Polarization and

Sensor Geometry
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The dielectric constant
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The Complex Dielectric Constant

•The complex dielectric constant consists

of a complex number

!% = !" + j!#

!" is the permittivity

!# is the loss
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The Complex Dielectric Constant
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where w0 is static dielectric constant of pure water, w! is high-frequency (or optical) limit of w ( w! = 4.9) , 

w is relaxation time of pure water (s); f is electromagnetic frequency (Hz).  

The Debye Model - Water
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The Complex Dielectric Constant
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Dielectric Mixture Models

Inclusion dielectric

in an air

background
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Dielectric Mixture Models
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Dielectric Mixture Models
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Dielectric Mixture Models

Water Volume (%/100)
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Bulk dielectric permittivity (!') of snow as a function of water volume and snow density
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Link between dielectrics and

scattering/emission

Snow               

Columnar layer

S1 , TPhy1
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Scattering & Emission

 Models



CEOSCEOS

Classes of Models

DMRT; Dense Medium Radiative Transfer; DMT: Dense Medium Theory, PS: physical optics under the scalar 

approximation, GO: geometric optics approximation, SP: small perturbation method

Volume scattering
Rough surface 

scattering
Multi-layer reflection

Integrated surface-

volume signature

model

Reflection-volume

signature

Multilayer Fresnel formula

•No scattering effects

•Applicable only to

Young saline ice

Many layer SFT

•Scattering effects

to some extent

•Applicable to

Young saline ice,

frozen melt ponds

(up to 40 GHz)

•bubbly ice (up to

20 GHz)

Rayleigh scattering

DMRT

DMT

•No reflection effects

•Poor agreements (at

H-pol) over young ice,

frozen melt ponds

•Bubbly ice up to 19

GHz

DMT-integration model

PS

GO

SP

Integration

•No significant

improvement from

DMT

•This indicated no

significant rough

surface scattering

effects

Numerical method

Empirical method

•Good potential

•Backscattering

problem

•Snow application

(Winebrenner et al., 1992; Nassar et al., 2000; Wiesmann and Matzler, 1999) 
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Emission/Scattering Theory

Snow               
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physical optics/geometric optics

• Surface Scattering
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Volume scattering
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Forward scattering model defined for

Microwave Scattering
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Forward scattering model defined for

Microwave Scattering

!
v

o
(") = 

2K
e

!
v
 cos "

'

 (1 - 

(exp (K
e
d sec("

'
)))

2

1 )
s

 

!
v
 = N

i
 !

bi

 + N
w
 !

bw
 

Where:

!
b
 = 

"
o

4

64 #5 r
6

 |K|
2

 

Volume Scattering



CEOSCEOS

Features in the mm range affect scattering
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Many layer SFT model (scattering and emission)

(Winebrenner et al., 1992) 

Description 

-assumes the snow/sea ice is a piecewise-continuous random 

medium and accounts for the interference between waves reflected 

and transmitted coherently by the various planar layers 

- accounts for the mean propagation and first-order multiple scattering 

effects by using bilocal and distorted born approximations 
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(Winebrenner et al., 1992) 

CEOS

Input parameters

General: frequency (GHz), angles

For ice: temperature, salinity, density, ice grain size (mm), air

bubble size, brine aspect ratio and tilted angle.

For snow: temperature, density, snow wetness (fractional volume)*,

snow grain size (mm).

*liquid water distributed between grains as well as around grains

(Stogryn, 1985).

Output parameters

Microwave  brightness temperature (emissivity) and backscattering

(sigma) for V and H polarizations.

Many layer SFT model (scattering and emission)
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Extending signatures temporally - Ice emissivity simulated by the

many layer strong fluctuation theory model. The brine skim/wet slush

was set to be 5 mm, and ice salinity based on field data

Hwang and Barber, JGR, in press
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Some examples
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Snow Thickness

• Scattering Response
. .
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SWE and Scattering

• Observed Response to Snow Thickness

Barber et al. 1998



CEOSCEOSYackel and Barber, 2000



CEOSCEOS

5 10 15 20

Site Number

0

20

40

60

D
e
p

th
 (

c
m

)

0

60

115

170

225
S

W
E

 (m
m

)

Snow

thickness
SWE

SWE and Radiometry (20 sites)

Barber et al. 2000.



CEOSCEOS

Explained variance versus
ƒ,P, and )
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Explained variance versus
ƒ,P, and )
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Late season sea ice

Melt Pond DielectricsMelt Pond Dielectrics Snow Patch DielectricsSnow Patch Dielectrics

!% = !" + j!#

!% = 65.8065.80+ j36.5136.51

for pure water at 

0°C, 5.3 GHz

for wet snow at

-1°C, 0.3 gm.m-3, 0.1 Wv

!% = 1.911.91+ j0.110.11
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Melt Ponds on Landfast First Year Sea Ice.
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The Temporal Evolution of

Sigma Naught

• Several variables must be taken into

consideration:

– The effect of incidence angle

– The effect of wind

– The contribution to backscatter (!º) by

volume and surface scattering as dictated

by the dielectrics of the system
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The Effect of Incidence Angle

• During periods of cold temperatures the dielectrics of
the system are considered static and changes to
backscatter are a function of incidence angle and
surface roughness

• The Incident Angle Calibration Model (IACM)
standardized !º to the near range of the RADARSAT-
1 swath (!º)
– The IACM explained in excess of 99% of the variability in

backscatter which resulted from changes in incidence angle
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The Effect of Wind

• Under calm conditions, volume scattering within
bare ice (!i) results in backscatter which is
greater than backscatter caused by surface
scattering from melt ponds (!m) or !i > !m.
– This allows for an estimation of melt ponds from SAR

• Over melt ponds, there is an amplification of !º as
a function of wind speed provided wind direction
is orthogonal to the SAR pulse
– Between 1.5ms-1 - 2.5ms-1 !i = !m.

– Above 2.5ms-1 !i < !m.
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Pond fraction (PF),

wind speed (W),

wind direction in

degrees (D) and

weather are all

indicated for each

image.  The images

have been calibrated

to ASF gamma

values and areas of

low backscatter

appear dark.  All

images are courtesy

of the Canadian

Space Agency (©

CSA, 2002)
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Surface AlbedoSurface Albedo

R
2
 = 0.913

! = 0.269 - 0.015 * "o 

0.5

0.52

0.54

0.56

0.58

0.6

-21 -20 -19 -18 -17

I
n
t
e
g
r
a
t
e
d
 
S
h
o
r
t
w
a
v
e
 
A
l

b
e
d
o
 
(

!
)

0.5

0.52

0.54

0.56

0.58

0.6

! = 0.379 - 0.012 * "o 

R 2 = 0.786

-18 -17 -16 -15 -14 -13 -12

Transect 8

Wind Speed = 3.2 m/s

July 3 Desc; 13: 27 UTC

Standard Beam 2 

-28 -26 -24 -22 -20 -18
0.52

0.54

0.56

0.58
! = 0.617 + 0.003 * "o

R2 = 0.1877

Transect 10

Wind Speed = 1.5 m/s

July 6 Asc; 23 :36 UTC

Standard Beam 6 

RADARSAT-1 Scattering Coefficient ("o)

Transect 8

Wind Speed = 5.3 m/s

July 3 Asc; 23 :24 UTC

Standard Beam 5 

Light Wind

Moderate Wind

Strong Wind

Extracting Summer Ice Information from SARExtracting Summer Ice Information from SAR



CEOSCEOS

The Temporal Evolution of !º
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The Temporal Evolution of Tb
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Conclusions

• Electro-thermophysical model (heuristic to physical)

• Emission/scattering models

• Geophysical vs Thermodynamic state (processes)

• Initialization and steering of models, data

assimilation

• Scale related science (micro to hemispheric)

• Merger of environmental science and technologies
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A metaphor for science and technology
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For more information

dbarber@cc.umanitoba.ca

www.umanitoba.ca/ceos
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Addendum


