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Radiative Transfer Model Intercomparison

• Phase 1: March to August 1999

• Reference: Pinty et al. (2001)
'Radiation Transfer Model
Intercomparison (RAMI)
Exercise', Journal of Geophysical
Research, 106, 11,937-11,956.

• Phase 2: February to June 2002

• Reference: Pinty et al. (2004)
'RAdiation transfer Model
Intercomparison (RAMI) exercise:
Results from the second phase',
Journal of Geophysical Research,
109, D06210
10.1029/2003JD004252.

• Phase 3: Mars to December 2005
(paper submitted)

• Home, protocols and results:
http://rami-benchmark.jrc.it/



• Radiation Transfer (RT) models constitute an essential component

for the quantitative interpretation of remote sensing data

• The accuracy and reliability of the solutions to the inverse problems

are determined by the performance of both the RT models and the

remote sensing instruments

• The increase in data accuracy and BRF sampling of current RS

instruments will be better exploited if the uncertainties of the RT

models are decreased

• The establishment of a consensus on standards among the surface

BRF community should form the basis for its credibility with respect

to other scientific communities as well as decision and policy makers

Motivations for RT model evaluation



Purpose:

• act as common platform

for intercomparison

• document discrepancies

between or uncertainties

and errors within models

• establish a model

intercomparison protocol

• foster scientific debate

Ref: http://rami-benchmark.jrc.it/.

RAMI benchmarking



• RAMI-1 (1999):
§ Turbid medium and discrete

§ Solar domain + purist corner

• RAMI-2 (2002):
§ Topography + true “zoom-in”

• RAMI-3 (2005):
§ Birch and conifer scene

(GO models)

§ Heterogeneous purist corner

§ Local transmission and
horizontal flux measurements

HOMogeneous HETerogeneous

RAMI-1 RAMI-2 RAMI-3
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Tartu Observatory,EstoniaM. Möttus, A. KuuskFRT

CCRS, CanadaR. FernandesMAC

CCRS, CanadaN. Rochdie, R. Fernandes5scale

JRC, ItalyB. Pinty, T. Lavergne2stream

NLR, NetherlandsW. Verhoef4SAIL2

Cox, USAR. ThompsonSprint3

JRC, ItalyN. Gobron! discret

NLR, NetherlandsW. VerhoefSAIL++

JRC,ItalyT. Lavergneraytran

JRC, ItalyT. LavergneRayspread

Beijing N. Univ., ChinaD. Xie, W. QinRGM

NASA GFSC, USAW. Qinmbrf

NOVELTIS, FranceR. RuilobaHyemalis

UCL, UKP. Lewis, M. Disneyfrat

Univ. Swansea, UKP. NorthFLIGHT

UCL, UKM. Disney, P. Lewisdrat

CESBIO, FranceJ.P. Gastellu, E.MartinDART

Tartu Observatory,EstoniaA. KuuskACRM

AFFILIATIONPARTICIPANTMODEL NAME

3-D models

1-D models

new in RAMI-3
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Absorption

Albedo

Transmission

Measurements include

Flux quantities:

• Albedo

• Transmission

• Absorption

BRF quantities:

•Total BRF (PP+OP)

total BRF

multiple collided

single collided

single uncollided

BRF quantities:

•Total BRF (PP+OP)

•BRF components
–multiple collided

–single uncollided
(hit soil only once)

–single collided (hit
leaves only once)

Measurement types



• In general, there is no absolute ‘truth’ available! Model results cannot be

evaluated against some reference standard.

• Laboratory data are difficult to use as reference standard due to incomplete

knowledge of the exact illumination, measurement, as well as (structural

and spectral) target properties.

but

• Model results can be compared against each other to document their

relative differences.

• Model results can be compared over ensembles of test scenarios

to establish trends/behaviours in their performance.

• Careful inspection/verification of an ensemble of model results may lead to

the establishment of the “most credible solutions” as a surrogate for the

“truth”.

RT model intercomparison caveats
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Relative intercomparison (2)



Use !2 metric to identify how close RT models are to a credible

BRF solution:
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Simulation error is fraction f of credible BRF solution:
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Relative intercomparison (3)



Homogeneous

X2 uses "=0.03<BRF>3D

RAMI-2RAMI-3

Discrete
Heterogeneous

RAMI-2RAMI-3

Model performance improved from RAMI-2 to RAMI-3!

Relative intercomparison (4)
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Measurement interpretation

• A model representing a measurement expresses the dependency of this
measurement with respect to the relevant variables:

),,,( 21 Msssfz L=

• where sm are the state variables of the system (here: target, environment,
source of radiation, sensor)

• In principle, if the model is correct and if the values of all state variables sm
are known, such a model can accurately simulate the observation (direct
problem)

• In practice, a quantity z* is measured, and one seeks information on the
state variables sm (inverse problem)

• If a single state variable accounts for the physics of the measurement, the
problem can be solved accurately (analytically or numerically):

• where s* is the estimate of the state variable retrieved from the
measurement z*, and ! stands for the error of measurement.

• In general, more than one state variable is required to describe the physics
of the problem. The solution of the inverse problem then requires multiple
equations and therefore multiple measurements.

);()()( *1*** !! zfssfzsfz "
=#+=#=



Example: Thermal IR

• As a simple initial example, consider the following thermal image, where
each pixel corresponds to a measurement of the emission intensity in the
infrared spectral domain:

4
TI !=

• To the extent the assumed model (f) is correct, the
temperature of the target can be estimated as follows:

• However, if the target is not a perfect blackbody, it will emit
with a spectrally-variable emissivity ! and the model (f)
becomes:

( ) 41/!IT =

The measured intensity I (in

W m-2) can be estimated

with the formula:

where " stands for the Stefan-Boltzmann

constant and T (in K) is the temperature of

the target (the only state variable in this

case).

4
TI !"=

• Because the system now has two state variables (! and T), there is an
infinite number of couples of values (solutions) that could satisfactorily
‘explain’ the measured intensity I.



Problem terminology

• A problem is said to be well-posed if it meets the following criteria,
set by Hadamard (1902):
§ For each set of data, there exists a solution

§ The solution is unique

§ The solution depends continuously on the data

• Inverse problems are usually ill-posed, because they tend to allow
multiple solutions.

• In addition, a problem is well-conditioned if small variations in the
input data induce small variations in the output. This is often
estimated with the condition number of the problem, defined as the
maximum value of the ratio of the relative errors in the solution to
the relative error in the data, over the problem domain.

• Inverse problems may also be ill-conditioned if solutions are very
sensitive to or change abruptly with small changes in the input data.

Ref: J. Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique. Bull. Univ. of

Princeton, p. 49-52, 1902.



Inversion caveats

Gathering multiple measurements is useless if
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• the target system changes between
successive observations (different values
of the state variables):

• or if identical measurements are simply
repeated:
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• additional measurements involve new state
variables and therefore new models:



Role of independent variables

• In the case of remote sensing, space and time naturally refer to different
targets, while wavelength, the geometry of illumination and observation,
and the polarization of the radiation are useful independent variables.
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• If the system of interest can be observed in more than one way, multiple
independent variables may be defined.

),,,;,,,( 2121 MN sssxxxfz LL=

where the independent variables xi describe the changing conditions of

observations. Their values are known at the time of the measurement.

• To acquire more information on an invariant system, it is necessary to
gather different measurements by changing one (or more) variable other
than the state variables. The measurement model then becomes:

• Multiple measurements may thus be acquired under different conditions of
observation:



Model inversion (1)

• In general, a system of K equations with M state variables cannot be solved
analytically or numerically to retrieve a unique exact solution.

• To derive reliable and accurate information on the properties of a target
from remote observations,

– if K<M, the system is under-determined.

– if K=M, measurement errors may prevent the identification of the exact
solution.

– if K>M, the system is over-determined.

• Instead of looking for the correct solution, (i.e., the values of the state
variables sm which do verify this system of equations), we try to find
an optimal solution, which best accounts for the observed variability in the
measurements, despite the noise, model limitations and incomplete
sampling.

• A quality criterion is thus needed.  For instance, we will try to minimize an
expression such as
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Model inversion (2)

• Practical (conceptual) procedure:

1. select arbitrary initial guess values of the state variables sm,

2. use the known values of the independent variables xn,

3. simulate the measurements in direct mode: z=f(xn,sm),

4. compute the corresponding figure of merit function #2.  If #2 is low
enough, stop and consider the current values of sm as the best
estimates of the state variables.  Otherwise, modify the values of sm in
some rational way and iterate from 2.

• When is #2 small enough?

§ If #2 >> !2, a significant fraction of the variance in the measured data
cannot be accounted for by the model,

§ If #2 << !2, the model may be trying to interpret measurement noise.

• How are the next values of sm selected?

• Alternative approaches:

§ Quasi-Newton, genetic algorithms

§ Adjoint models, Kalman filters, assimilation methods

§ Look Up Tables (LUT)



Notes on inversion procedures

• The essence of an inversion procedure conceptually reduces to a
minimization problem

• The performance of an inversion algorithm is directly linked to the way the
model parameter space is searched to locate the optimal solution

• Quasi-Newton methods, Adjoint models, Genetic Algorithms and other
procedures are particular tools to implement this search; they compete on
accuracy, speed, algorithmic complexity (derivatives or model values only),
and reliability

• The complexity of the model, the efficiency of the inversion procedure, and
the speed of computation critically control the applicability of a
model/inversion procedure in an operational context

• The interpretation of a data set by inversion requires a model describing
how measurements depend on the selected independent variable(s), and
the inversion process generates a new data set that is independent of the
independent variable(s) used in the process



Inversion caveats (1)

• Most inversion problems accept multiple solutions: solution space,
probable solutions, most representative solution

• Probable solutions may depend on the initial guess, choice of #2 function
and computational accuracy

• More (larger K) and better measurements (lower #) tend to reduce the set
of probable solutions (constraints)

• More complex models (larger M) expand the solution space and may
increase the set of probable solutions

• Solutions for which #2 < #2 are indistinguishable on the basis of available
empirical evidence: multiple solutions may be equally acceptable

• Iterative algorithms may be expensive operationally



Inversion caveats (2)

• Results may be sensitive to initial guess values of sm (local minima)

§ Repeat the inversion starting from other initial conditions (e.g., Genetic
Algorithms)

• Results may be sensitive to numerical accuracy

§ Use double or quadruple precision (on the computer)

• Results may be sensitive to the exit criterion (number of iterations, lack of
further progress, error or exception condition detection)

§ Test different criteria

• Models with more state variables better 'fit' the data but generate more
possible solutions

§ Limit the number of state variables to be estimated simultaneously

• Repeated model value and model derivative computations in real-time may
lead to very large computing requirements

§ Investigate alternative approaches and trade-offs
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Look Up Table (LUT) approach (1)

• An alternative to the dynamic iterative search for an optimized solution is

§ to pre-compute once and for all the set of all possible measurements
associated with all conceivable target systems of interest and conditions
of observation: {x} and {s} " database (LUT) of simulated z

§ to solve the inverse problem by searching for the best match between
the string of measurements and the entries of such a LUT for identical
values of the independent variables: {x} and actual z* " most likely {s}

• The LUT pre-defines (and therefore limits a priori) the solutions which can
be found, but it guarantees that at least one solution will always be found

• The LUT approach always yields a ranked set of possible solutions, and
makes their non-uniqueness explicit

• One advantage is to allow a significant fraction of all computations to be
made in advance, but the decrease in real-time floating point calculations is
traded-off against increased memory requirements of the LUT



Look Up Table (LUT) approach (2)

• The discretization of the LUT with respect to independent and dependent
variables is crucial:

§ simulating conditions that never occur imposes useless computing
beforehand and unnecessary searches during the inversion process.

§ too high a discretization may lead to the frequent identification of
multiple solutions.

§ the level of discretization may be expanded or reduced to provide better
accuracy where needed or to avoid almost equivalent solutions.

• More realistic or complex algorithms (in particular coupled models) may be
used to generate the LUT than with more traditional approaches.

• The failure to match a set of measurements with any entry in the LUT may
indicate that the observed system does not correspond to any of the ones
assumed during the creation of the LUT, and may serve to discriminate
undesirable situations (e.g., the presence of clouds in the case of a retrieval
of surface properties).  Alternatively, additional geophysical situations can
be included in the LUT.
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Example 1: Estimating surface albedo

Ref: Pinty, B., F. Roveda, M. M. Verstraete, N. Gobron, Y. Govaerts, J. V. Martonchik, D. Diner and R. Kahn

(2000)  'Surface Albedo Retrieval from METEOSAT. Part 1: Theory and Part 2: Application', Journal of

Geophysical Research, 105, 18,099-18,134.

• Application to Meteosat:

§ simulate the ToA BRF that should
be measured by this sensor for a
large variety of soil, vegetation and
atmospheric conditions, as well as
for typical geometries of
illuminations and observation
during the day

§ for each actual measurement string
and associated independent
variables, search the LUT
(database) for the closest match

§ assign the geophysical properties
of that simulation to the
corresponding location

Meteosat-5, 1-20 June 1996 composite, !s=30°



Example 1: Ensuring consistency

May 1999

Ref: Govaerts et al (2004) Geophysical Research Letters, 31, L15201 10.1029/2004GL020418.



Example 1: Ensuring consistency

May 1999

Ref: Govaerts et al (2004) Geophysical Research Letters, 31, L15201 10.1029/2004GL020418.



Example 1: Ensuring consistency

Ref: Govaerts et al (2004) Geophysical Research Letters, 31, L15201 10.1029/2004GL020418.

METEOSAT-7 METEOSAT-5



Example 1: Global albedo product

Broadband surface albedo derived at EUMETSAT (in collaboration with JRC) from two

European (Meteosat-5 and -7), two American (GOES-8 and -10) and one Japanese (GMS-5)

geostationary satellites, 1-10 May 2001.



Example 2: Simulating forest stands

200 tree/hectare

400 tree/hectare

800 tree/hectare

1200 tree/hectare

100 tree/hectare

LEGEND

Ref: Widlowski, J-L., B. Pinty, N. Gobron and M. M. Verstraete (2001)  'Detection and Characterization of

Boreal Coniferous Forests from Remote Sensing Data', Journal of Geophysical Research, 106,

33,405-33,419.

• Application to SPOT-Vegetation sensor:
§ simulate the ToA BRF that should be measured

§ search the LUT (database) for the closest match

§ save the geophysical properties of that match



Example 2: Estimating forest density
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Ref: Widlowski, J-L., B. Pinty, N. Gobron and M. M. Verstraete (2001)  'Detection and Characterization of

Boreal Coniferous Forests from Remote Sensing Data', Journal of Geophysical Research, 106,

33,405-33,419.

• Values compare favourably with independent,

field-based estimates (PELCOM and FMERS)

• Accuracy is user-specified; more stringent

requirements result in more limited spatial

coverage

200 tree/hectare

400 tree/hectare

800 tree/hectare

1200 tree/hectare

100 tree/hectare
LEGEND
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Characterizing heterogeneity

Ref: Pinty, B. et al. (2002) 'Uniqueness of Multiangular Measurements, Part 1: An Indicator of Subpixel Surface

Heterogeneity from MISR',  IEEE Transactions on Geoscience and Remote Sensing, MISR Special Issue, 40,

1560-1573.
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Overview of AirMISR

Ref: http://www-misr.jpl.nasa.gov/mission/minst.html.

• 1 camera pointable at ±70.5,
±60, ±45.6, ±26.1, 0°

• Spectral bands at 446, 558,
672, and 866 nm

• Spatial resolution: L1B2 data re-
sampled at 27.5 m

• Image length: 9 – 26 km (0 –70°)

• Swath: 11 – 32 km (0 – 70°)

• Coverage: on request

• Data: LaRC DAAC



Atmospheric correction of AirMISR

Ref: http://www-misr.jpl.nasa.gov/mission/minst.html.

SALINA, KS

July 1999

Top-of-atmosphere

Image (70º)

Rayleigh-corrected

Rayleigh + aerosol

corrected



Target structure and anisotropy (1)

Ref: Gobron, N. et al. (2002) 'Uniqueness of Multiangular Measurements, Part 2: Joint Retrieval of Vegetation

Structure and Photosynthetic Activity From MISR',  IEEE Transactions on Geoscience and Remote Sensing,

MISR Special Issue, 40, 1574-1592.
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AirMISR campaign, Konza Prairie, June 1999



Target structure and anisotropy (2)

Ref: Gobron, N. et al. (2002) 'Uniqueness of Multiangular Measurements, Part 2: Joint Retrieval of Vegetation

Structure and Photosynthetic Activity From MISR',  IEEE Transactions on Geoscience and Remote Sensing,

MISR Special Issue, 40, 1574-1592.

• Konza Prairie, June 2000

• A: Bare soil between trees

• B: Clearing between canopies

• C: Young corn field

• D: mixed vegetation

• E: Dry river bed

• F: Fence between two open

fields

• G: Agriculture



Overview of MISR

Ref: http://www-misr.jpl.nasa.gov/mission/minst.html.

• 9 cameras at ±70.5, ±60, ±45.6,
±26.1, 0°

• Each camera at 446, 558, 672,
and 866 nm

• Spatial resolution: 275 m (250 m
nadir)

• Global mode: Full res. nadir and
red, 1.1 km otherwise

• Local mode: Full resolution all
cameras and all bands

• Swath: 360 km

• Coverage: global (9 days)



Target structure and anisotropy (3)

Ref: http://www-misr.jpl.nasa.gov/gallery/galhistory/2001_may_30.html.

Saskatchewan

and Manitoba

April 17, 2001

RGB = Nir, R, G

285

km

RGB = R60a, Rn, R60f

N

Snow

Forests

Roads

Agriculture



Target structure and anisotropy (4)

Ref: http://www-misr.jpl.nasa.gov/gallery/galhistory.html

Saratov, Russia

31 May 2002 (top)

18 July 2002 (bottom)

‘True color’ MISR An (left)

Red anisotropy (right):

RGB = MISR Ca, An, Cf

Green: bell-shaped

anisotropy

controlled by soils and

vertical plants

Purple: bowl-shaped anisotropy

controlled by bare soils



Impact of Canopy Structure on surface BRF (1)

Ref: Widlowski, J.-L.et al. (2004) 'Canopy Structure Parameters Derived From Multi-angular Remote

Sensing Data for Terrestrial Carbon Studies', Climatic Change, 67, 403-415.

$=red

SZA=30°

IFOV~275 m

1.5

1.0

0.5

Bell shape

Bowl shape 

kred



Impact of canopy structure on surface BRF (2)

Ref: Pinty, B.et al. (2002) 'Uniqueness of Multiangular Measurements Part 1: An Indicator of Subpixel Surface

Heterogeneity from MISR',  IEEE Transactions on Geoscience and Remote Sensing, MISR Special Issue, 40,

1560-1573.
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            Leaf area index

            (LAI) increases

The 1-D’ homologue of a 3-D 

surface target features identical 

optical (rL, tL, $soil), directional 

(Bi-Lambertian) and  structural 

(LAI, LND, Lrad, LAD) canopy 

characteristics as its 3-D original 

with the exception of foliage 

clumping.



Impact of canopy structure on surface BRF (3)

Ref: Pinty, B.et al. (2002) 'Uniqueness of Multiangular Measurements Part 1: An Indicator of Subpixel Surface

Heterogeneity from MISR',  IEEE Transactions on Geoscience and Remote Sensing, MISR Special Issue, 40,

1560-1573.

1-D! surface representations

(IPA) tend to be

characterized throughout

by bowl-shaped BRF fields

At low and high vegetation

coverage, 3-D scenes also

exhibit bowl-shaped BRF

fields

3-D scene representations

of intermediate vegetation

coverage tend to exhibit

bell-shaped reflectance

fields

3
-D

1
-D

’

k3-D ! k1-D’       if k3-D ! 1*



Impact of canopy structure on surface BRF (4)

• It is not indifferent to use a 1D’ or a 3D model to represent the
anisotropy of land surfaces.

• Detailed studies have been carried out to establish when 1D’
models provide solutions equivalent to 3D models, and when 3D
models are absolutely required: See Widlowski et al. (2005) ‘Using
1-D models to interpret the reflectance anisotropy of 3-D canopy
targets: Issues and caveats’, IEEE TGRS, 43, 2008-2017.

• Using 3D models is particularly necessary to interpret remote
sensing data at high spatial resolution; at coarse spatial resolutions
(larger than a few hundred m), 1D’ models appear generally
adequate.




