
Sea Ice, Climate Change and RemoteSea Ice, Climate Change and Remote

SensingSensing

Prof. David Barber

Canada Research Chair in Arctic System Science

Director, Centre for Earth Observation Science

University of Manitoba

Winnipeg, MB. Canada

www.umanitoba.ca/ceos

ESA Summer School, August, 2006



CEOSCEOS

Lecture outline

1) Arctic Climate Change and Remote Sensing

2) Thermodynamics, Geophysics and AOP/IOPs

3) Dielectrics, scattering and emission modeling
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Outline of this talk

• A look at thermodynamic processes

• Snow geophysics

• Sea ice geophysics

• A look at complexity

• Conclusions
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Frequency/Polarization and

Sensor Geometry
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Thermodynamic Processes
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snow

Multilayer thermodynamic model
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Temperature is the control



Ice site overview, measurements
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Radiation, Heat and Mass Transfer Processes 

of Snow over FYI
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•Snow is a complex crystalline material which forms

from the condensation and sublimation of water

vapour onto a nucleating material.

•Upon deposition the dendritic structures (small

angular crystal pieces which make up the snow flake)

break into fragments (a process known as saltation).

•This saltation process quickly increases the density of

the snow as it is blown across the Arctic sea ice.

•As the dendrites age a process called sintering occurs

(i.e., bonds forming at the points of adjacent

dendrites).

•This process results in an equilibrium density for

snow of about  375 kg·m-3 for snow on Arctic sea

ice.

Dendrites
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•Under temperature gradient metamorphism there is

a transfer of mass along the temperature gradient.

•This process is typified by the sublimation at the

warm end of the snow grain, transfer along the

vapour pressure gradient, and a corresponding

phase change from vapour back to a solid at the

colder end of the snow grain.

•This process results in a predominantly elongated

crystal structure with the long axis parallel to the

direction of the vapour gradient.

•The metamorphic state which results from this

process is often called kinetic growth snow grain.

Kinetic

structures
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•When water in liquid phase is low (or absent) equi-

temperature metamorphosis will create larger

grains at the expense of smaller grains due to the

vapour pressures associated with the snow grain

shapes.

•This is the principal process associated with  early

spring grain growth or snow ripening.

•When water in liquid phase increases large grains

will combine into polycrystalline aggregates.

•When adjacent equitemperature grains aggregate

large single grain entities result .

•This usually coincides with draining within the

snow pack.

Aggregate

Structures
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Sea Ice
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Snow

Sea Ice
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Sea Ice
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Brine flux

New Sea Ice
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Snow is

saline

(Eicken’s chapter in Thomas and Dieckmann (ed) 2004)

First year sea ice microstructure
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Ice microstructure, light nilas, Cape Bathurst polynya

Station 124A on Oct 26, 2003

1.5cm
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8cm

5mm thick section

through transmitted

light

1mm thin section

between polarizing

sheets
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Crystal structure (FYI, Franklin Bay, May 9, 2004)

• Sea ice has irregular
crystal boundaries

• Growth parallel to (0001)
plane is favored

$ Geometric selection to
vertical c-axis orientation
with depth.

• Sizes increase with depth
(related to growth rate)

• C-axis alignment with
currents

• Close to bottom of thick
FYI irregular c-axis
orientations observed
(no explanation)
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9 cm44 cm
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Close-ups with microscope

viewed from above

8cm

6cm

Brine channel

Brine tube

Brine pocket Cellular substructure

     platelet

Interconnected tubes
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1.5cm

4cm
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Very thin ice examples

Calm conditions

Agitated conditions
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Multiyear sea ice microstructure
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Some effects of temperature

Solid salts precipitate in brine

pockets (Light et al., 2002)

Brine tubes become

fragmented when

cooled (CASES, 10

Apr, 2004)

1
m

m

Freezing Warming

Brine clusters merge

(CASES, May 16,

2004)

Gas bubbles

form within

tubes.

(CASES,

May 16)
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Processes leading to melt pond

maturity over FYI.  The melt

pond – albedo feedback is

initiated by an increase in the

atmospheric heat flux (L),

stimulating snow ablation and

the development of melt ponds.

During initial pond formation

the albedo of young ponds is

dictated by pond depth and the

scattering properties of the

frazil ice layer.  Ablation of the

frazil layer is a function of the

wind induced mechanical

weathering, and solar

insolation (Wm-2).  As the melt

ponds matured, the albedo is

dictated by pond depth and the

optical properties of the

columnar ice volume
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The Effect of Frazil Ice On Albedo

• The evolution of melt ponds through the melt season.
Bubble densities quickly reduced after initial ponding
however a ring of high bubble density is found along
pond fringes during times of advance.
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Pond Onset
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Pond Development
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Mature Ponds
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Pond Drainage
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IOP and AOP of the seasonal ice cover



29.04.2005

Melting new snow

Early melt pond with 1cm of water

New snow collecting at rougher surface

Measurements - Spectral albedo site M3

CEOS
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M4 – hummock with ~5cm soft surface layerM3 – large bare ice area – early melt pond

1cm of water 

on ice surface

resulted in lowest

observed albedo

Hummock (or white ice) sites 

had clearly smaller variability

than bare ice (or blue ice).
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Spectral irradiance profiles and transmittance
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What about spatial variability?
17 April 1998

25 June 1998

4 August 1998



What about AOP’s and IOP’s

at the bottom of the ice?
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Vertical profiles in sea ice for (a) temperature

(daily mean), (b) salinity and (c) density, with (d)

corresponding calculations of brine and air

inclusion volume fractions. Note the cut in scale

on the latter. The emphasis is on the bottom part

where high temperature and salinities resulted in

an off the scale increase in volume fractions.

Horizontal microstructure sections of a sea ice

sample taken on 9 May. The numbers on the

right-hand corner of each image indicate the

height above the ice-water interface from which

the section was extracted. Processing by:

  1. Edge detect

  2. Torn edges
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(a) The vertical downwelling irradiance profiles

integrated over PAR wavelengths and normalized

to bottom irradiance values. The corresponding

diffuse downwelling irradiance attenuation spectra

for the (b) interior ice and (c) bottom 10-cm

bottom layer, with comparisons to (d) particulate

absorption coefficient.

Average chlorophyll-a

concentrations measured on four

occasions using three different

methods to extract samples; ice

core drilled from surface (core),

4-cm thick ice puck taken by

diver from below (puck), and

bottommost algae layer sampled

by diver using syringe “slurp gun”
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A brief look at Complexity?

 Snow
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Sea Ice Modeled Processes

snow

ice

atmosphere

ocean (mixed layer)

T = -1.8°C if ice exists

Kd Ld

Fa

Lu Ku Fs Fl

T = sfc temp

T = -1.8 C

Q*

Flux(1)

Flux(2)

Kd = downwelling SW flux

Ku = upwelling SW flux

Fa  = absorbed SW flux

Ld = downwelling LW flux

Lu = upwelling LW flux

Fs = sensible heat flux

Fl = latent heat flux

Q* = net sfc flux

Flux(1)=snow-ice conductive

              flux

Flux(2)=ice-ocean conductive

              flux

Multiple layers (49)

Sfc nrg balance

Conductive fluxes
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Hourly vs. Daily Forcing
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Bias of ‘land based’ versus ‘on ice’ forcing
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SFS more realistic snow & ice ablation
Hanesiak et al.
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Conclusions

1. Need to know geophysics and thermodynamics to determine

scattering and response to forcing

2. Dynamic vs Thermodynamic processes are NB

3. Many feedbacks exist and processes are not yet well understood

(and thus not modelled).

4. System is very sensitive to changes in snow thickness, distribution

and deposition (timing of sea ice formation is critical)

5. Assumptions of current processes applicable to the future


