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L ecture outline

1) Arctic Climate Change and Remote Sensing

2) Thermodynamics, Geophysics and AOP/IOPs

3) Dielectrics, scattering and emission modeling




Outline of this talk

A look at thermodynamic processes
Snow geophysics

Sea ice geophysics

A look at complexity

Conclusions










Forward Approach
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Frequency/Polarization and
Sensor Geometry
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Thermodynamic Processes




Multilayer thermodynamic model

Olw:open water albedo

Snow/ice Ol sea ice albedo
Olds: dry snow albedo

Olws: wet snow albedo
(lm: melt pond albedo

Ice/ocean Freeze-up Winter

Ailr/snow




Temperature 1s the control
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Ice site overview,

Nondestructive
transmittance
measurements
and irradiance
profiles.
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Radiation, Heat and Mass Transfer Processes
of Snow over FYI
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*Snow 1S a complex crystalline material which forms
from the condensation and sublimation of water
vapour onto a nucleating material.

*Upon deposition the dendritic structures (small
angular crystal pieces which make up the snow flake)
break into fragments (a process known as saltation).

*This saltation process quickly increases the density of
the snow as it 1s blown across the Arctic sea ice.

* As the dendrites age a process called sintering occurs
(1.e., bonds forming at the points of adjacent
dendrites).

*This process results in an equilibrium density for
snow of about 375 kg'm-3 for snow on Arctic sea=
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eUnder temperature gradient metamorphism there is
a transfer of mass along the temperature gradient.

*This process is typified by the sublimation at the
warm end of the snow grain, transfer along the
vapour pressure gradient, and a corresponding
phase change from vapour back to a solid at the
colder end of the snow grain.

*This process results in a predominantly elongated
crystal structure with the long axis parallel to the
direction of the vapour gradient.

*The metamorphic state which results from this
process is often called kinetic growth snow grain.
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*When water in liquid phase is low (or absent) equi-
temperature metamorphosis will create larger
grains at the expense of smaller grains due to the
vapour pressures associated with the snow grain
shapes.

*This i1s the principal process associated with early
spring grain growth or snow ripening.

*When water in liquid phase increases large grains
will combine into polycrystalline aggregates.

*When adjacent equitemperature grains aggregate
large single grain entities result .

*This usually coincides with draining within the
snow pack.
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New Sea Ice










First year sea ice microstructure
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Sea ice has irregular
crystal boundaries

Growth parallel to (0001)
plane is favored
= Geometric selection to
vertical c-axis orientation
with depth.
Sizes increase with depth
(related to growth rate)

C-axis alignment with
currents

Close to bottom of thick
FYI irregular c-axis
orientations observed
(no explanation)

bottom




4 Close-ups with microscope
< T viewed from above

.
Interconnected tubes

Brine tube

Brine pocket “ ' Cellular substructure
platelet
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Temperature 1s the control
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Temp effect on the partial fractions of brine/ice and air
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Imm

100 ﬁm

Solid salts precipitate in brine
pockets (Light et al., 2002)

| 0.5mm |

Gas bubbles
form within
\ tubes.
Brine tubes become (CASES,
fragmented when Brine clusters merge May 16)

cooled (CASES, 10 (CASES, May 16,
Apr, 2004) 2004)
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Young Pond @ Mature Pond
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act _of Frazil Ice On Albedo

* The evolution of melt ponds through the melt season. 7
Bubble densities quickly reduced after initial ponding ; *
however a ring of high bubble density is found al
pond fringes during times of advance.
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IOP and AOP of the seasonal ice cover




- Spectral albedo site M3

Melting new snow

. 29.04.2005




Spectral albedos from Button Bay, HB2005, April 7 to April 29, M-sites

M1 — small bare ice area

Hummock (or white ice) sites
had clearly smaller variability
than bare ice (or blue ice).

lcm of water

on ice surface
resulted in lowest
observed albedo




Spectral irradiance profiles and transmittance




Diffuse attenuation
coefficient K (A) calculated

from 1rradiance profile
T1 0421 (hummock)




17 April 1998

What about spatial variability?

4 August 1998

Figure 3. Range of observed values of total albedo for sen ice. The albedos
are from Burt (1954), Chernigovskiy (1963), Langleben (1971), Grenfell
and Mavkut (1977), and Grenfell and Perovich (1954).




What\about AOR’s and IOP’s
at the%ttom of the ice?
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A brief look at Complexity?

Snow




Sea lce Modeled Processes

Sfc nrg balance

Kd = downwelling SW flux

Ku = upwelling SW flux Kd Ld
Fa = absorbed SW flux

Ld = downwelling LW flux

Lu = upwelling LW flux

Fs = sensible heat flux i Fa
Fl = latent heat flux

Q* = net sfc flux

Flux(1)

Conductive fluxes

Flux(1)=snow-ice conductive
flux

Flux(2)=ice-ocean conductive
flux

Flux(2)

Lu Ku Fs Fl

IR

Q>X<




Role of snow 1n complexity
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Modeled vs. Observed Albedo
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Hourly vs. Daily Forcing
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Bias of land based’ versus ‘on ice’ forcing

Snow (day)

Snow (CONT)
Snow (SFS)

Snow (obs)

Julian Day

Q*
CONT/obs SFS/obs CONT/obs SFS/obs
R-Square 0.44 0.56 0.91 0.98
Mean Error -2.5 -2 2.5 -0.08
St. Dev. 30 25 3.1 1.7

Hanesiak et al.

SFS more realistic snow & ice ablation >CEDS 4




Conclusions




Conclusions

Need to know geophysics and thermodynamics to determine
scattering and response to forcing

Dynamic vs Thermodynamic processes are NB

Many feedbacks exist and processes are not yet well understood
(and thus not modelled).

System is very sensitive to changes in snow thickness, distribution
and deposition (timing of sea ice formation is critical)

Assumptions of current processes applicable to the future




