Data assimilation methods based on the Kalman Filter

Operational implementations in oceanography

P. BRASSEUR

CNRS/LEGI, Grenoble, France Pierre.Brasseur@hmg.inpg.fr

L. Berline, J.M. Brankart, G. Broquet, V. Carmillet, Y. Ourmières, J. Verron

P. Bahurel, M. Drevillon, E. Rémy, N. Ferry, L. Parent, C.E. Testut, B. Tranchant

L. Bertino, G. Evensen

N. Pinardi, S. Dobricic

Operational Oceanography: the backbone for <u>regular</u> and <u>routine provision of data and information</u> for the Ocean

Operational Oceanography: the first steps

GODAE Global Ocean Data Assimilation Experiment

MARINE ENVIRONMENT AND SECURITY FOR THE EUROPEAN AREA

Ocean and Marine Applications for GMES

Objective: development of a European system of systems for operational monitoring and forecasting of the ocean physics, biogeochemistry, and ecosystems, on global and regional scales

Funded by E.U. (FP6) 2004-2008

Mersea Executive Committee (Y. Desaubies, P. Bahurel, M. Bell, E. Buch, Johannessen, P.-Y. Le Traon, G. Manzella N. Pinardi, S. Pouliquen, R. Rayner, H. Roquet, U. Send, J. Verron)

and many partners

MARINE ENVIRONMENT AND SECURITY FOR THE EUROPEAN AREA

Ocean and Marine Applications for GMES

OUTLINE of this talk

The MERCATOR Ocean Prediction System

- **ü** Objectives and components
- **ü** SAM: a hierarchy of Assimilation Schemes
- **ü** Applications

q Assimilation Challenges for MERSEA

- ü Assimilating observations at the air/sea interface
- New perspectives for SMOS-type measurements
- i Integration of marine ecosystem models

MERCATOR a new player in oceanography since 1995

- Joint initiative of French agencies for Global/Regional Operational Ocean Monitoring and Forecasting

 Monitoring and Forecasting

 METEO

 FRANCE
- Providing real-time Ocean Services since 2001, to a wide variety of users
- n Participating to the E.U MERSEA integrated project
- Next objective: the Fast Track Marine Service for GMES (Global Monitoring for Environment and Security)

From observations to end-users

Ocean data assimilated in operational systems

Ocean domains

The MERCATOR global ¼° model developed in liaison with a science project (CLIPPER)

Barnier et al., 2006: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynamics, in press (online first).

The Mercator Assimilation System (SAM) from research to real-time operations

Brasseur *et al.*, **2006**: Data assimilation for marine monitoring and prediction : the MERCATOR operational assimilation systems and the MERSEA developments, *QJRMS*, *in press*.

Research	1993 (OI)
R&D	1997
Integration	1999
Operational	2001

SAM-1

Incremental implementation strategy

The SAM-2 scheme (derived from SEEK) for mesoscale data assimilation in MERCATOR

Real-time assimilation cycle: how does it work?

- Every week on Tuesday night / Wednesday morning:
 - Most recent data are collected from data centres (SSALTO/DUACS & CORIOLIS)
 - Forcing fields are downloaded (ECMWF)
 - We go 2 weeks back in time and perform a run from T_{i-14} to T_i
 - Hindcast: forecast the past, perform analysis at T_{i-7}:
 - best MERCATOR estimate from T_{i-14} to T_{i-7}
 - Nowcast: forecast the present, perform analysis at T_i:
 - Temporary results (not all the obs available), will be updated next week
 - We perform a 2-week forecast -> applications, ...

Files created by MERCATOR: full fields - daily

Oceanic bulletin web page:

http://www.mercator-ocean.fr/

... operations against Oil Pollution

(serving Météo-France, ...)

... supporting field campaigns

June 2002 Scientific Cruise (OVIDE) Salinity Field

Mercator PSY2

CTD

... monitoring « ocean climate » and looking back to extreme events

n hot weather event during summer 2003

... monitoring « ocean climate » and looking back to extreme events

hot weather event during summer 2003

MERSEA R&D in Data Assimilation

DA objectives

- n to improve our capacity to assimilate data from different sources (satellite altimetry, SST, SSS, in situ profiles, sea-ice param., ocean colour, ...) in ocean circulation models:
- n to develop the prototype of a coupled physical biological assimilative system, with the objective to demonstrate the capacity to routinely estimate and forecast biogeochemical variables.

Participants

- n NERSC, Norway (L. Bertino)
- n AWI, Germany (J. Schröter)
- UU, The Netherlands (P.J. van Leeuwen)
- CNRS, France (J. Verron)

OUTLINE of this talk

- **The MERCATOR Ocean Prediction System**
 - **ü** Objectives and components
 - **ü** SAM: a hierarchy of Assimilation Schemes
 - **ü** Applications
- q Assimilation Challenges for MERSEA
 - ü Assimilating observations at the air/sea interface
 - New perspectives for SMOS-type measurements
 - **ü** Integration of marine ecosystem models

« Augmented » state vector estimation (Skachko et al., 2006)

Uncertainties on forcings

« Augmented » state vector estimation Skachko et al., 2006

Expected benefits:

- q Reduction of uncertainties on oceanic forcings (parameterizations)
- q Improved control of mixed layer properties

« Augmented » state vector estimation including « bulk » coefficients (Skachko et al., 2006)

Assimilation of simulated data (0-200 m) in global OPA 2°x2°

RMS error on latent heat flux coef (x 10³)

 $Q_{lat} = \tilde{n}_{air} L_{w} C_{E} W max (0, q_{srf} - q_{air})$

RMS error on temperature

RMS error on SST

« Augmented » state vector estimation including « bulk » coefficients (Skachko et al., 2006)

Assimilation of simulated data (0-200 m) in global OPA 2°x2°

RMS error on heat flux (computed a posteriori, in W/m2)

q Generic approach: to be generalised to other observations at O/A interfaces

Towards Sea-Surface Salinity Data Assimilation with SMOS (2007) (Durand et al., 2003)

- q In the Tropical Pacific, SSS is potentially useful to
 - (i) compensate errors arising from ocean/atmosphere interactions (E-P)
 - (ii) better understand / forecast (?) seasonal climate variability.

The ESA SMOS Mission

(Soil Moisture and Ocean Salinity, 2007)

• The MIRAS sensor: an L-band Y-shape interferometric radiometer (1.4 GHz)

(b) Field of view (FOV)

• The measurements: for a given pixel in FOV (sizes from ~35km to ~80km), a series of reconstructed L-band brightness temperature is measured at several incidence angles (0-60°) and polarization

(Courtesy N. Reul, Ifremer)

Ocean Surface Salinity: measurement principle of SMOS

• For electromagnetic frequencies < 20 GHz, the dielectric constant ε of sea water follows :

$$\epsilon(T, \mathbf{S}, f) = \underbrace{\epsilon_{\infty}(T, \mathbf{S}) + \frac{\epsilon_o(T, \mathbf{S}) - \epsilon_{\infty}(T, \mathbf{S})}{1 - j2\pi f \tau(T, \mathbf{S})}}_{relaxation} + \underbrace{j\frac{\sigma_i(T, \mathbf{S})}{2\pi \epsilon'_o f}}_{conductivite}$$

where ϵ_{∞} , ϵ_{o} , τ_{sw} et σ_{i} are polynomial functions of sea surface salinity S (SSS) and Sea Surface Temperature T. Maximum sensitivity to S occurs for low values of f (=1.4 GHz)

• The brightness temperature T_B of the sea surface measured by a radiometer at frequency f, incidence angle θ_i , azimuth Φ_i and polarization p is given by:

$$T_B(\theta_i, \phi_i, f, p) = T \cdot e(\theta_i, \phi_i, f, p, \epsilon(T, S, f), \vec{U}, X)$$

where $oldsymbol{e}$ is surface emissivity and $ec{U}$ is the wind speed vector

(Courtesy N. Reul, Ifremer)

SSS assimilation impact studies using SAM-2

Tranchant et al., 2006

$$T_B(\theta_i, \phi_i, f, p) = T \cdot e(\theta_i, \phi_i, f, p, \epsilon(T, S, f), \vec{U}, X)$$

ð 2 different approaches:

 \varnothing Invert T_b measurements into SSS data (using, e.g. look-up tables), and then assimilate SSS in the PE model.

Response of marine ecosystems to ocean climate variability?

NPDZ - LOBSTER - PISCES - ? PHY PO4 Remineralization DOC Fecal pellets Dissociation POC Mortality Sinking **ASSIMILATION** SeaWiFS Chlorophyll: Six-Year Annual Best-Fit 1998 North Pacific Gyre $= -0.00235 \times + 0.006 (+/-0.0012)$ Gregg et al., 2005, **GRL** 1998 1999 2000 2001 2002 2003

Assimilation of **SLA+SST** data in coupled models

A MERSEA demonstration: the BIONUTS/Mercator project

Development of advanced sequential filters: towards non-linear filtering

- Traditional data-assimilation based on linearizations (Kalman Filter, 4D-VAR)
- Models become strongly nonlinear (physics/bio-chemistry, higher resolution)
- Need for nonlinear data-assimilation

→ new « resampling » strategies (SIR, EnKF)

in situ concentrations

Development of the EnKF: anamorphosis

Improves EnKF with 1D ecosystem model [Bertino et al. ISR 2003]

Illustration

Idealised case: 1-D ecological model

- Spring bloom model, yearly cycles in the ocean
- n Evans & Parslow (1985), Eknes & Evensen (2002)

Characteristics

- Sensitive to initial conditions
- *Non-linear dynamics*

Nutrients

time-depths plots

Herbivores

Phytoplankton

Anamorphosis: a logarithmic transform

<u>Original</u>

<u>histograms</u>

asymmetric

N P H

Histograms of logarithms

less asymmetric

Arbitrary choice, possible refinements (polynomial fit)

EnKF assimilation results

(Bertino et al., 2003)

Concluding remarks

- Operational Oceanography is on good tracks; the progress should continue after GODAE
- **Satellite altimetry is absolutely vital** for ocean forecasting systems. The expected gap in altimetric missions (post-Envisat, post Jason-1) will not be filled in by alternative observing systems (in space or *in situ*).
- efforts should be undertaken (at institutional level) to make sure that the ocean research and operational communities are working together in the best possible way (GMES will not solve everything!)

© 2003 United Feature Syndicate, Inc.

Thank you!